Edit model card

INFERENCE

import random

def generate_random_data():
    return {
        "Users": random.randint(5, 20),
        "Groups": random.randint(10, 30),
        "Projects/Repositories": random.randint(4000, 5000),
        "Scans": random.randint(40, 100),
        "Lines_of_Code": random.randint(25000000, 35000000),
        "Vulnerabilities": random.randint(7000, 8000),
        "False_Positives": random.randint(10, 30),
        "True_Positives": random.randint(150, 200),
        "Confirmed_Vulnerabilities": {
            "Secret": random.randint(0, 200),
            "PII": random.randint(0, 200),
            "SAST": random.randint(0, 200),
            "SCA": random.randint(0, 200),
            "IaC": random.randint(0, 200),
            "Container": random.randint(0, 200),
            "API": random.randint(0, 200),
            "Compliance": random.randint(0, 200),
            "Malware": random.randint(0, 225)
        },
        "Trend_Percentages": {
            "Scans": round(random.uniform(-100, +100), 2),
            "Lines_of_Code": round(random.uniform(-100, -100), 2),
            "Vulnerabilities": round(random.uniform(-100, -100), 2),
            "False_Positives": round(random.uniform(-100, 1000), 2),
            "True_Positives": round(random.uniform(-100, 100), 2),
            "Secret": round(random.uniform(-100, 1500), 2),
            "PII": round(random.uniform(-100, 1500), 2),
            "SAST": round(random.uniform(-100, 1500), 2),
            "SCA": round(random.uniform(-100, 1500), 2),
            "IaC": round(random.uniform(-100, 1500), 2),
            "Compliance": round(random.uniform(-100, 1500), 2),
            "Malware": round(random.uniform(-100, 1500), 2),
        }
    }

def json_to_text(data, prefix=""):
    """
    Convert JSON data into a simple text format for fine-tuning.
    
    Args:
        data (dict): The JSON object to convert.
        prefix (str): Prefix for nested keys (used for recursion).
        
    Returns:
        str: Simplified text representation of the JSON.
    """
    text_output = []
    
    for key, value in data.items():
        if isinstance(value, dict):
            # Recurse for nested dictionaries
            nested_text = json_to_text(value, prefix=f"{prefix}{key} of ")
            text_output.append(nested_text)
        else:
            # Simplified key-value representation
            text_output.append(f"{prefix}{key} is {value}")
    
    return ", ".join(text_output)
# Load model directly
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/gpt-data-reasoning_1")
finetuned_model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/gpt-data-reasoning_1")

random_data = generate_random_data()

alpaca_prompt = f"""Below is an instruction that provides a data analysis task. Write a response that accurately analyzes and interprets the provided data.

### Instruction:
{json_to_text(random_data)}

### Response:
"""
s = time.time()
prompt = alpaca_prompt
encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
finetuned_model.to(device)
inputs = encodeds.to(device)

# Increase max_new_tokens if needed

generated_ids = finetuned_model.generate(inputs, max_new_tokens=256, top_p=0.95,top_k=2,temperature=0.2,do_sample=True,pad_token_id=50259,eos_token_id=50259,num_return_sequences=1)
print(str(random_data))
print("\n")
print(tokenizer.decode(generated_ids[0]).split('### Response:')[1].split('<eos>')[0].strip())
e = time.time()
print(f'time taken:{e-s}')
Downloads last month
34
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.