Mrohit01's picture
Model save
23794c7 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cards-vit-base-patch16-224-finetuned-v1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.31704202872849796

cards-vit-base-patch16-224-finetuned-v1

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9972
  • Accuracy: 0.3170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7068 0.9993 378 1.9533 0.2753
1.6691 1.9987 756 1.9642 0.2864
1.6278 2.9980 1134 1.9935 0.3018
1.5837 4.0 1513 2.0155 0.3077
1.5263 4.9993 1891 2.0283 0.3063
1.4969 5.9987 2269 2.0026 0.3081
1.5088 6.9980 2647 2.0275 0.3098
1.4623 8.0 3026 2.0096 0.3137
1.4305 8.9993 3404 2.0239 0.3154
1.3895 9.9934 3780 1.9972 0.3170

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1