|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- mteb |
|
model-index: |
|
- name: SGPT-125M-weightedmean-nli-bitfit |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 65.88059701492537 |
|
- type: ap |
|
value: 28.685493163579785 |
|
- type: f1 |
|
value: 59.79951005816335 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 59.07922912205568 |
|
- type: ap |
|
value: 73.91887421019034 |
|
- type: f1 |
|
value: 56.6316368658711 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
metrics: |
|
- type: accuracy |
|
value: 64.91754122938531 |
|
- type: ap |
|
value: 16.360681214864226 |
|
- type: f1 |
|
value: 53.126592061523766 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 56.423982869378996 |
|
- type: ap |
|
value: 12.143003571907899 |
|
- type: f1 |
|
value: 45.76363777987471 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
metrics: |
|
- type: accuracy |
|
value: 74.938225 |
|
- type: ap |
|
value: 69.58187110320567 |
|
- type: f1 |
|
value: 74.72744058439321 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 35.098 |
|
- type: f1 |
|
value: 34.73265651435726 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 24.516 |
|
- type: f1 |
|
value: 24.21748200448397 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 29.097999999999995 |
|
- type: f1 |
|
value: 28.620040162757093 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 27.395999999999997 |
|
- type: f1 |
|
value: 27.146888644986284 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 21.724 |
|
- type: f1 |
|
value: 21.37230564276654 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
metrics: |
|
- type: accuracy |
|
value: 23.976 |
|
- type: f1 |
|
value: 23.741137981755482 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.442000000000002 |
|
- type: map_at_10 |
|
value: 24.275 |
|
- type: map_at_100 |
|
value: 25.588 |
|
- type: map_at_1000 |
|
value: 25.659 |
|
- type: map_at_3 |
|
value: 20.092 |
|
- type: map_at_5 |
|
value: 22.439999999999998 |
|
- type: ndcg_at_1 |
|
value: 13.442000000000002 |
|
- type: ndcg_at_10 |
|
value: 31.04 |
|
- type: ndcg_at_100 |
|
value: 37.529 |
|
- type: ndcg_at_1000 |
|
value: 39.348 |
|
- type: ndcg_at_3 |
|
value: 22.342000000000002 |
|
- type: ndcg_at_5 |
|
value: 26.595999999999997 |
|
- type: precision_at_1 |
|
value: 13.442000000000002 |
|
- type: precision_at_10 |
|
value: 5.299 |
|
- type: precision_at_100 |
|
value: 0.836 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 9.625 |
|
- type: precision_at_5 |
|
value: 7.852 |
|
- type: recall_at_1 |
|
value: 13.442000000000002 |
|
- type: recall_at_10 |
|
value: 52.986999999999995 |
|
- type: recall_at_100 |
|
value: 83.64200000000001 |
|
- type: recall_at_1000 |
|
value: 97.795 |
|
- type: recall_at_3 |
|
value: 28.876 |
|
- type: recall_at_5 |
|
value: 39.26 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 34.742482477870766 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 24.67870651472156 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
metrics: |
|
- type: map |
|
value: 52.63439984994702 |
|
- type: mrr |
|
value: 65.75704612408214 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.78000135012542 |
|
- type: cos_sim_spearman |
|
value: 70.92812216947605 |
|
- type: euclidean_pearson |
|
value: 77.1169214949292 |
|
- type: euclidean_spearman |
|
value: 77.10175681583313 |
|
- type: manhattan_pearson |
|
value: 76.84527031837595 |
|
- type: manhattan_spearman |
|
value: 77.0704308008438 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (de-en) |
|
metrics: |
|
- type: accuracy |
|
value: 1.0960334029227559 |
|
- type: f1 |
|
value: 1.0925539318023658 |
|
- type: precision |
|
value: 1.0908141962421711 |
|
- type: recall |
|
value: 1.0960334029227559 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (fr-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.02201188641866608 |
|
- type: f1 |
|
value: 0.02201188641866608 |
|
- type: precision |
|
value: 0.02201188641866608 |
|
- type: recall |
|
value: 0.02201188641866608 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (ru-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.0 |
|
- type: f1 |
|
value: 0.0 |
|
- type: precision |
|
value: 0.0 |
|
- type: recall |
|
value: 0.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (zh-en) |
|
metrics: |
|
- type: accuracy |
|
value: 0.0 |
|
- type: f1 |
|
value: 0.0 |
|
- type: precision |
|
value: 0.0 |
|
- type: recall |
|
value: 0.0 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
metrics: |
|
- type: accuracy |
|
value: 74.67857142857142 |
|
- type: f1 |
|
value: 74.61743413995573 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 28.93427045246491 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 23.080939123955474 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.221999999999998 |
|
- type: map_at_10 |
|
value: 24.506 |
|
- type: map_at_100 |
|
value: 25.611 |
|
- type: map_at_1000 |
|
value: 25.758 |
|
- type: map_at_3 |
|
value: 22.264999999999997 |
|
- type: map_at_5 |
|
value: 23.698 |
|
- type: ndcg_at_1 |
|
value: 23.033 |
|
- type: ndcg_at_10 |
|
value: 28.719 |
|
- type: ndcg_at_100 |
|
value: 33.748 |
|
- type: ndcg_at_1000 |
|
value: 37.056 |
|
- type: ndcg_at_3 |
|
value: 25.240000000000002 |
|
- type: ndcg_at_5 |
|
value: 27.12 |
|
- type: precision_at_1 |
|
value: 23.033 |
|
- type: precision_at_10 |
|
value: 5.408 |
|
- type: precision_at_100 |
|
value: 1.004 |
|
- type: precision_at_1000 |
|
value: 0.158 |
|
- type: precision_at_3 |
|
value: 11.874 |
|
- type: precision_at_5 |
|
value: 8.927 |
|
- type: recall_at_1 |
|
value: 18.221999999999998 |
|
- type: recall_at_10 |
|
value: 36.355 |
|
- type: recall_at_100 |
|
value: 58.724 |
|
- type: recall_at_1000 |
|
value: 81.33500000000001 |
|
- type: recall_at_3 |
|
value: 26.334000000000003 |
|
- type: recall_at_5 |
|
value: 31.4 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.058 |
|
- type: map_at_10 |
|
value: 16.051000000000002 |
|
- type: map_at_100 |
|
value: 16.772000000000002 |
|
- type: map_at_1000 |
|
value: 16.871 |
|
- type: map_at_3 |
|
value: 14.78 |
|
- type: map_at_5 |
|
value: 15.5 |
|
- type: ndcg_at_1 |
|
value: 15.35 |
|
- type: ndcg_at_10 |
|
value: 18.804000000000002 |
|
- type: ndcg_at_100 |
|
value: 22.346 |
|
- type: ndcg_at_1000 |
|
value: 25.007 |
|
- type: ndcg_at_3 |
|
value: 16.768 |
|
- type: ndcg_at_5 |
|
value: 17.692 |
|
- type: precision_at_1 |
|
value: 15.35 |
|
- type: precision_at_10 |
|
value: 3.51 |
|
- type: precision_at_100 |
|
value: 0.664 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 7.983 |
|
- type: precision_at_5 |
|
value: 5.656 |
|
- type: recall_at_1 |
|
value: 12.058 |
|
- type: recall_at_10 |
|
value: 23.644000000000002 |
|
- type: recall_at_100 |
|
value: 39.76 |
|
- type: recall_at_1000 |
|
value: 58.56 |
|
- type: recall_at_3 |
|
value: 17.541999999999998 |
|
- type: recall_at_5 |
|
value: 20.232 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.183 |
|
- type: map_at_10 |
|
value: 28.9 |
|
- type: map_at_100 |
|
value: 29.858 |
|
- type: map_at_1000 |
|
value: 29.953999999999997 |
|
- type: map_at_3 |
|
value: 26.58 |
|
- type: map_at_5 |
|
value: 27.912 |
|
- type: ndcg_at_1 |
|
value: 24.765 |
|
- type: ndcg_at_10 |
|
value: 33.339999999999996 |
|
- type: ndcg_at_100 |
|
value: 37.997 |
|
- type: ndcg_at_1000 |
|
value: 40.416000000000004 |
|
- type: ndcg_at_3 |
|
value: 29.044999999999998 |
|
- type: ndcg_at_5 |
|
value: 31.121 |
|
- type: precision_at_1 |
|
value: 24.765 |
|
- type: precision_at_10 |
|
value: 5.599 |
|
- type: precision_at_100 |
|
value: 0.8699999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11499999999999999 |
|
- type: precision_at_3 |
|
value: 13.270999999999999 |
|
- type: precision_at_5 |
|
value: 9.367 |
|
- type: recall_at_1 |
|
value: 21.183 |
|
- type: recall_at_10 |
|
value: 43.875 |
|
- type: recall_at_100 |
|
value: 65.005 |
|
- type: recall_at_1000 |
|
value: 83.017 |
|
- type: recall_at_3 |
|
value: 32.232 |
|
- type: recall_at_5 |
|
value: 37.308 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 11.350999999999999 |
|
- type: map_at_10 |
|
value: 14.953 |
|
- type: map_at_100 |
|
value: 15.623000000000001 |
|
- type: map_at_1000 |
|
value: 15.716 |
|
- type: map_at_3 |
|
value: 13.603000000000002 |
|
- type: map_at_5 |
|
value: 14.343 |
|
- type: ndcg_at_1 |
|
value: 12.429 |
|
- type: ndcg_at_10 |
|
value: 17.319000000000003 |
|
- type: ndcg_at_100 |
|
value: 20.990000000000002 |
|
- type: ndcg_at_1000 |
|
value: 23.899 |
|
- type: ndcg_at_3 |
|
value: 14.605 |
|
- type: ndcg_at_5 |
|
value: 15.89 |
|
- type: precision_at_1 |
|
value: 12.429 |
|
- type: precision_at_10 |
|
value: 2.701 |
|
- type: precision_at_100 |
|
value: 0.48700000000000004 |
|
- type: precision_at_1000 |
|
value: 0.078 |
|
- type: precision_at_3 |
|
value: 6.026 |
|
- type: precision_at_5 |
|
value: 4.3839999999999995 |
|
- type: recall_at_1 |
|
value: 11.350999999999999 |
|
- type: recall_at_10 |
|
value: 23.536 |
|
- type: recall_at_100 |
|
value: 40.942 |
|
- type: recall_at_1000 |
|
value: 64.05 |
|
- type: recall_at_3 |
|
value: 16.195 |
|
- type: recall_at_5 |
|
value: 19.264 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.08 |
|
- type: map_at_10 |
|
value: 11.691 |
|
- type: map_at_100 |
|
value: 12.312 |
|
- type: map_at_1000 |
|
value: 12.439 |
|
- type: map_at_3 |
|
value: 10.344000000000001 |
|
- type: map_at_5 |
|
value: 10.996 |
|
- type: ndcg_at_1 |
|
value: 10.697 |
|
- type: ndcg_at_10 |
|
value: 14.48 |
|
- type: ndcg_at_100 |
|
value: 18.160999999999998 |
|
- type: ndcg_at_1000 |
|
value: 21.886 |
|
- type: ndcg_at_3 |
|
value: 11.872 |
|
- type: ndcg_at_5 |
|
value: 12.834000000000001 |
|
- type: precision_at_1 |
|
value: 10.697 |
|
- type: precision_at_10 |
|
value: 2.811 |
|
- type: precision_at_100 |
|
value: 0.551 |
|
- type: precision_at_1000 |
|
value: 0.10200000000000001 |
|
- type: precision_at_3 |
|
value: 5.804 |
|
- type: precision_at_5 |
|
value: 4.154 |
|
- type: recall_at_1 |
|
value: 8.08 |
|
- type: recall_at_10 |
|
value: 20.235 |
|
- type: recall_at_100 |
|
value: 37.525999999999996 |
|
- type: recall_at_1000 |
|
value: 65.106 |
|
- type: recall_at_3 |
|
value: 12.803999999999998 |
|
- type: recall_at_5 |
|
value: 15.498999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.908999999999999 |
|
- type: map_at_10 |
|
value: 19.256 |
|
- type: map_at_100 |
|
value: 20.286 |
|
- type: map_at_1000 |
|
value: 20.429 |
|
- type: map_at_3 |
|
value: 17.399 |
|
- type: map_at_5 |
|
value: 18.398999999999997 |
|
- type: ndcg_at_1 |
|
value: 17.421 |
|
- type: ndcg_at_10 |
|
value: 23.105999999999998 |
|
- type: ndcg_at_100 |
|
value: 28.128999999999998 |
|
- type: ndcg_at_1000 |
|
value: 31.480999999999998 |
|
- type: ndcg_at_3 |
|
value: 19.789 |
|
- type: ndcg_at_5 |
|
value: 21.237000000000002 |
|
- type: precision_at_1 |
|
value: 17.421 |
|
- type: precision_at_10 |
|
value: 4.331 |
|
- type: precision_at_100 |
|
value: 0.839 |
|
- type: precision_at_1000 |
|
value: 0.131 |
|
- type: precision_at_3 |
|
value: 9.4 |
|
- type: precision_at_5 |
|
value: 6.776 |
|
- type: recall_at_1 |
|
value: 13.908999999999999 |
|
- type: recall_at_10 |
|
value: 31.086999999999996 |
|
- type: recall_at_100 |
|
value: 52.946000000000005 |
|
- type: recall_at_1000 |
|
value: 76.546 |
|
- type: recall_at_3 |
|
value: 21.351 |
|
- type: recall_at_5 |
|
value: 25.264999999999997 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.598 |
|
- type: map_at_10 |
|
value: 17.304 |
|
- type: map_at_100 |
|
value: 18.209 |
|
- type: map_at_1000 |
|
value: 18.328 |
|
- type: map_at_3 |
|
value: 15.784 |
|
- type: map_at_5 |
|
value: 16.669999999999998 |
|
- type: ndcg_at_1 |
|
value: 15.867999999999999 |
|
- type: ndcg_at_10 |
|
value: 20.623 |
|
- type: ndcg_at_100 |
|
value: 25.093 |
|
- type: ndcg_at_1000 |
|
value: 28.498 |
|
- type: ndcg_at_3 |
|
value: 17.912 |
|
- type: ndcg_at_5 |
|
value: 19.198 |
|
- type: precision_at_1 |
|
value: 15.867999999999999 |
|
- type: precision_at_10 |
|
value: 3.7670000000000003 |
|
- type: precision_at_100 |
|
value: 0.716 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 8.638 |
|
- type: precision_at_5 |
|
value: 6.21 |
|
- type: recall_at_1 |
|
value: 12.598 |
|
- type: recall_at_10 |
|
value: 27.144000000000002 |
|
- type: recall_at_100 |
|
value: 46.817 |
|
- type: recall_at_1000 |
|
value: 71.86099999999999 |
|
- type: recall_at_3 |
|
value: 19.231 |
|
- type: recall_at_5 |
|
value: 22.716 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.738416666666666 |
|
- type: map_at_10 |
|
value: 17.235916666666668 |
|
- type: map_at_100 |
|
value: 18.063333333333333 |
|
- type: map_at_1000 |
|
value: 18.18433333333333 |
|
- type: map_at_3 |
|
value: 15.74775 |
|
- type: map_at_5 |
|
value: 16.57825 |
|
- type: ndcg_at_1 |
|
value: 15.487416666666665 |
|
- type: ndcg_at_10 |
|
value: 20.290166666666668 |
|
- type: ndcg_at_100 |
|
value: 24.41291666666666 |
|
- type: ndcg_at_1000 |
|
value: 27.586333333333336 |
|
- type: ndcg_at_3 |
|
value: 17.622083333333332 |
|
- type: ndcg_at_5 |
|
value: 18.859916666666667 |
|
- type: precision_at_1 |
|
value: 15.487416666666665 |
|
- type: precision_at_10 |
|
value: 3.6226666666666665 |
|
- type: precision_at_100 |
|
value: 0.6820833333333334 |
|
- type: precision_at_1000 |
|
value: 0.11216666666666666 |
|
- type: precision_at_3 |
|
value: 8.163749999999999 |
|
- type: precision_at_5 |
|
value: 5.865416666666667 |
|
- type: recall_at_1 |
|
value: 12.738416666666666 |
|
- type: recall_at_10 |
|
value: 26.599416666666663 |
|
- type: recall_at_100 |
|
value: 45.41258333333334 |
|
- type: recall_at_1000 |
|
value: 68.7565 |
|
- type: recall_at_3 |
|
value: 19.008166666666668 |
|
- type: recall_at_5 |
|
value: 22.24991666666667 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.307 |
|
- type: map_at_10 |
|
value: 15.440000000000001 |
|
- type: map_at_100 |
|
value: 16.033 |
|
- type: map_at_1000 |
|
value: 16.14 |
|
- type: map_at_3 |
|
value: 14.393 |
|
- type: map_at_5 |
|
value: 14.856 |
|
- type: ndcg_at_1 |
|
value: 14.571000000000002 |
|
- type: ndcg_at_10 |
|
value: 17.685000000000002 |
|
- type: ndcg_at_100 |
|
value: 20.882 |
|
- type: ndcg_at_1000 |
|
value: 23.888 |
|
- type: ndcg_at_3 |
|
value: 15.739 |
|
- type: ndcg_at_5 |
|
value: 16.391 |
|
- type: precision_at_1 |
|
value: 14.571000000000002 |
|
- type: precision_at_10 |
|
value: 2.883 |
|
- type: precision_at_100 |
|
value: 0.49100000000000005 |
|
- type: precision_at_1000 |
|
value: 0.08 |
|
- type: precision_at_3 |
|
value: 7.0040000000000004 |
|
- type: precision_at_5 |
|
value: 4.693 |
|
- type: recall_at_1 |
|
value: 12.307 |
|
- type: recall_at_10 |
|
value: 22.566 |
|
- type: recall_at_100 |
|
value: 37.469 |
|
- type: recall_at_1000 |
|
value: 60.550000000000004 |
|
- type: recall_at_3 |
|
value: 16.742 |
|
- type: recall_at_5 |
|
value: 18.634 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.496 |
|
- type: map_at_10 |
|
value: 9.243 |
|
- type: map_at_100 |
|
value: 9.841 |
|
- type: map_at_1000 |
|
value: 9.946000000000002 |
|
- type: map_at_3 |
|
value: 8.395 |
|
- type: map_at_5 |
|
value: 8.872 |
|
- type: ndcg_at_1 |
|
value: 8.224 |
|
- type: ndcg_at_10 |
|
value: 11.24 |
|
- type: ndcg_at_100 |
|
value: 14.524999999999999 |
|
- type: ndcg_at_1000 |
|
value: 17.686 |
|
- type: ndcg_at_3 |
|
value: 9.617 |
|
- type: ndcg_at_5 |
|
value: 10.37 |
|
- type: precision_at_1 |
|
value: 8.224 |
|
- type: precision_at_10 |
|
value: 2.0820000000000003 |
|
- type: precision_at_100 |
|
value: 0.443 |
|
- type: precision_at_1000 |
|
value: 0.08499999999999999 |
|
- type: precision_at_3 |
|
value: 4.623 |
|
- type: precision_at_5 |
|
value: 3.331 |
|
- type: recall_at_1 |
|
value: 6.496 |
|
- type: recall_at_10 |
|
value: 15.310000000000002 |
|
- type: recall_at_100 |
|
value: 30.680000000000003 |
|
- type: recall_at_1000 |
|
value: 54.335 |
|
- type: recall_at_3 |
|
value: 10.691 |
|
- type: recall_at_5 |
|
value: 12.687999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.843 |
|
- type: map_at_10 |
|
value: 17.496000000000002 |
|
- type: map_at_100 |
|
value: 18.304000000000002 |
|
- type: map_at_1000 |
|
value: 18.426000000000002 |
|
- type: map_at_3 |
|
value: 16.225 |
|
- type: map_at_5 |
|
value: 16.830000000000002 |
|
- type: ndcg_at_1 |
|
value: 16.698 |
|
- type: ndcg_at_10 |
|
value: 20.301 |
|
- type: ndcg_at_100 |
|
value: 24.523 |
|
- type: ndcg_at_1000 |
|
value: 27.784 |
|
- type: ndcg_at_3 |
|
value: 17.822 |
|
- type: ndcg_at_5 |
|
value: 18.794 |
|
- type: precision_at_1 |
|
value: 16.698 |
|
- type: precision_at_10 |
|
value: 3.3579999999999997 |
|
- type: precision_at_100 |
|
value: 0.618 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 7.898 |
|
- type: precision_at_5 |
|
value: 5.428999999999999 |
|
- type: recall_at_1 |
|
value: 13.843 |
|
- type: recall_at_10 |
|
value: 25.887999999999998 |
|
- type: recall_at_100 |
|
value: 45.028 |
|
- type: recall_at_1000 |
|
value: 68.991 |
|
- type: recall_at_3 |
|
value: 18.851000000000003 |
|
- type: recall_at_5 |
|
value: 21.462 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.757 |
|
- type: map_at_10 |
|
value: 19.27 |
|
- type: map_at_100 |
|
value: 20.461 |
|
- type: map_at_1000 |
|
value: 20.641000000000002 |
|
- type: map_at_3 |
|
value: 17.865000000000002 |
|
- type: map_at_5 |
|
value: 18.618000000000002 |
|
- type: ndcg_at_1 |
|
value: 16.996 |
|
- type: ndcg_at_10 |
|
value: 22.774 |
|
- type: ndcg_at_100 |
|
value: 27.675 |
|
- type: ndcg_at_1000 |
|
value: 31.145 |
|
- type: ndcg_at_3 |
|
value: 20.691000000000003 |
|
- type: ndcg_at_5 |
|
value: 21.741 |
|
- type: precision_at_1 |
|
value: 16.996 |
|
- type: precision_at_10 |
|
value: 4.545 |
|
- type: precision_at_100 |
|
value: 1.036 |
|
- type: precision_at_1000 |
|
value: 0.185 |
|
- type: precision_at_3 |
|
value: 10.145 |
|
- type: precision_at_5 |
|
value: 7.391 |
|
- type: recall_at_1 |
|
value: 13.757 |
|
- type: recall_at_10 |
|
value: 28.233999999999998 |
|
- type: recall_at_100 |
|
value: 51.05499999999999 |
|
- type: recall_at_1000 |
|
value: 75.35300000000001 |
|
- type: recall_at_3 |
|
value: 21.794 |
|
- type: recall_at_5 |
|
value: 24.614 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.057 |
|
- type: map_at_10 |
|
value: 12.720999999999998 |
|
- type: map_at_100 |
|
value: 13.450000000000001 |
|
- type: map_at_1000 |
|
value: 13.564000000000002 |
|
- type: map_at_3 |
|
value: 11.34 |
|
- type: map_at_5 |
|
value: 12.245000000000001 |
|
- type: ndcg_at_1 |
|
value: 9.797 |
|
- type: ndcg_at_10 |
|
value: 15.091 |
|
- type: ndcg_at_100 |
|
value: 18.886 |
|
- type: ndcg_at_1000 |
|
value: 22.29 |
|
- type: ndcg_at_3 |
|
value: 12.365 |
|
- type: ndcg_at_5 |
|
value: 13.931 |
|
- type: precision_at_1 |
|
value: 9.797 |
|
- type: precision_at_10 |
|
value: 2.477 |
|
- type: precision_at_100 |
|
value: 0.466 |
|
- type: precision_at_1000 |
|
value: 0.082 |
|
- type: precision_at_3 |
|
value: 5.299 |
|
- type: precision_at_5 |
|
value: 4.067 |
|
- type: recall_at_1 |
|
value: 9.057 |
|
- type: recall_at_10 |
|
value: 21.319 |
|
- type: recall_at_100 |
|
value: 38.999 |
|
- type: recall_at_1000 |
|
value: 65.374 |
|
- type: recall_at_3 |
|
value: 14.331 |
|
- type: recall_at_5 |
|
value: 17.916999999999998 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.714 |
|
- type: map_at_10 |
|
value: 6.926 |
|
- type: map_at_100 |
|
value: 7.879 |
|
- type: map_at_1000 |
|
value: 8.032 |
|
- type: map_at_3 |
|
value: 5.504 |
|
- type: map_at_5 |
|
value: 6.357 |
|
- type: ndcg_at_1 |
|
value: 8.86 |
|
- type: ndcg_at_10 |
|
value: 11.007 |
|
- type: ndcg_at_100 |
|
value: 16.154 |
|
- type: ndcg_at_1000 |
|
value: 19.668 |
|
- type: ndcg_at_3 |
|
value: 8.103 |
|
- type: ndcg_at_5 |
|
value: 9.456000000000001 |
|
- type: precision_at_1 |
|
value: 8.86 |
|
- type: precision_at_10 |
|
value: 3.7199999999999998 |
|
- type: precision_at_100 |
|
value: 0.9169999999999999 |
|
- type: precision_at_1000 |
|
value: 0.156 |
|
- type: precision_at_3 |
|
value: 6.254 |
|
- type: precision_at_5 |
|
value: 5.380999999999999 |
|
- type: recall_at_1 |
|
value: 3.714 |
|
- type: recall_at_10 |
|
value: 14.382 |
|
- type: recall_at_100 |
|
value: 33.166000000000004 |
|
- type: recall_at_1000 |
|
value: 53.444 |
|
- type: recall_at_3 |
|
value: 7.523000000000001 |
|
- type: recall_at_5 |
|
value: 10.91 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.764 |
|
- type: map_at_10 |
|
value: 3.8600000000000003 |
|
- type: map_at_100 |
|
value: 5.457 |
|
- type: map_at_1000 |
|
value: 5.938000000000001 |
|
- type: map_at_3 |
|
value: 2.667 |
|
- type: map_at_5 |
|
value: 3.2199999999999998 |
|
- type: ndcg_at_1 |
|
value: 14.000000000000002 |
|
- type: ndcg_at_10 |
|
value: 10.868 |
|
- type: ndcg_at_100 |
|
value: 12.866 |
|
- type: ndcg_at_1000 |
|
value: 17.43 |
|
- type: ndcg_at_3 |
|
value: 11.943 |
|
- type: ndcg_at_5 |
|
value: 11.66 |
|
- type: precision_at_1 |
|
value: 19.25 |
|
- type: precision_at_10 |
|
value: 10.274999999999999 |
|
- type: precision_at_100 |
|
value: 3.527 |
|
- type: precision_at_1000 |
|
value: 0.9119999999999999 |
|
- type: precision_at_3 |
|
value: 14.917 |
|
- type: precision_at_5 |
|
value: 13.5 |
|
- type: recall_at_1 |
|
value: 1.764 |
|
- type: recall_at_10 |
|
value: 6.609 |
|
- type: recall_at_100 |
|
value: 17.616 |
|
- type: recall_at_1000 |
|
value: 33.085 |
|
- type: recall_at_3 |
|
value: 3.115 |
|
- type: recall_at_5 |
|
value: 4.605 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
metrics: |
|
- type: accuracy |
|
value: 42.225 |
|
- type: f1 |
|
value: 37.563516542112104 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
metrics: |
|
- type: map_at_1 |
|
value: 11.497 |
|
- type: map_at_10 |
|
value: 15.744 |
|
- type: map_at_100 |
|
value: 16.3 |
|
- type: map_at_1000 |
|
value: 16.365 |
|
- type: map_at_3 |
|
value: 14.44 |
|
- type: map_at_5 |
|
value: 15.18 |
|
- type: ndcg_at_1 |
|
value: 12.346 |
|
- type: ndcg_at_10 |
|
value: 18.398999999999997 |
|
- type: ndcg_at_100 |
|
value: 21.399 |
|
- type: ndcg_at_1000 |
|
value: 23.442 |
|
- type: ndcg_at_3 |
|
value: 15.695 |
|
- type: ndcg_at_5 |
|
value: 17.027 |
|
- type: precision_at_1 |
|
value: 12.346 |
|
- type: precision_at_10 |
|
value: 2.798 |
|
- type: precision_at_100 |
|
value: 0.445 |
|
- type: precision_at_1000 |
|
value: 0.063 |
|
- type: precision_at_3 |
|
value: 6.586 |
|
- type: precision_at_5 |
|
value: 4.665 |
|
- type: recall_at_1 |
|
value: 11.497 |
|
- type: recall_at_10 |
|
value: 25.636 |
|
- type: recall_at_100 |
|
value: 39.894 |
|
- type: recall_at_1000 |
|
value: 56.181000000000004 |
|
- type: recall_at_3 |
|
value: 18.273 |
|
- type: recall_at_5 |
|
value: 21.474 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.637 |
|
- type: map_at_10 |
|
value: 6.084 |
|
- type: map_at_100 |
|
value: 6.9190000000000005 |
|
- type: map_at_1000 |
|
value: 7.1080000000000005 |
|
- type: map_at_3 |
|
value: 5.071 |
|
- type: map_at_5 |
|
value: 5.5649999999999995 |
|
- type: ndcg_at_1 |
|
value: 7.407 |
|
- type: ndcg_at_10 |
|
value: 8.94 |
|
- type: ndcg_at_100 |
|
value: 13.594999999999999 |
|
- type: ndcg_at_1000 |
|
value: 18.29 |
|
- type: ndcg_at_3 |
|
value: 7.393 |
|
- type: ndcg_at_5 |
|
value: 7.854 |
|
- type: precision_at_1 |
|
value: 7.407 |
|
- type: precision_at_10 |
|
value: 2.778 |
|
- type: precision_at_100 |
|
value: 0.75 |
|
- type: precision_at_1000 |
|
value: 0.154 |
|
- type: precision_at_3 |
|
value: 5.144 |
|
- type: precision_at_5 |
|
value: 3.981 |
|
- type: recall_at_1 |
|
value: 3.637 |
|
- type: recall_at_10 |
|
value: 11.821 |
|
- type: recall_at_100 |
|
value: 30.18 |
|
- type: recall_at_1000 |
|
value: 60.207 |
|
- type: recall_at_3 |
|
value: 6.839 |
|
- type: recall_at_5 |
|
value: 8.649 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.676 |
|
- type: map_at_10 |
|
value: 13.350999999999999 |
|
- type: map_at_100 |
|
value: 13.919 |
|
- type: map_at_1000 |
|
value: 14.01 |
|
- type: map_at_3 |
|
value: 12.223 |
|
- type: map_at_5 |
|
value: 12.812000000000001 |
|
- type: ndcg_at_1 |
|
value: 19.352 |
|
- type: ndcg_at_10 |
|
value: 17.727 |
|
- type: ndcg_at_100 |
|
value: 20.837 |
|
- type: ndcg_at_1000 |
|
value: 23.412 |
|
- type: ndcg_at_3 |
|
value: 15.317 |
|
- type: ndcg_at_5 |
|
value: 16.436 |
|
- type: precision_at_1 |
|
value: 19.352 |
|
- type: precision_at_10 |
|
value: 3.993 |
|
- type: precision_at_100 |
|
value: 0.651 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 9.669 |
|
- type: precision_at_5 |
|
value: 6.69 |
|
- type: recall_at_1 |
|
value: 9.676 |
|
- type: recall_at_10 |
|
value: 19.966 |
|
- type: recall_at_100 |
|
value: 32.573 |
|
- type: recall_at_1000 |
|
value: 49.905 |
|
- type: recall_at_3 |
|
value: 14.504 |
|
- type: recall_at_5 |
|
value: 16.725 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
metrics: |
|
- type: accuracy |
|
value: 62.895999999999994 |
|
- type: ap |
|
value: 58.47769349850157 |
|
- type: f1 |
|
value: 62.67885149592086 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.88 |
|
- type: map_at_10 |
|
value: 4.914000000000001 |
|
- type: map_at_100 |
|
value: 5.459 |
|
- type: map_at_1000 |
|
value: 5.538 |
|
- type: map_at_3 |
|
value: 4.087 |
|
- type: map_at_5 |
|
value: 4.518 |
|
- type: ndcg_at_1 |
|
value: 2.937 |
|
- type: ndcg_at_10 |
|
value: 6.273 |
|
- type: ndcg_at_100 |
|
value: 9.426 |
|
- type: ndcg_at_1000 |
|
value: 12.033000000000001 |
|
- type: ndcg_at_3 |
|
value: 4.513 |
|
- type: ndcg_at_5 |
|
value: 5.292 |
|
- type: precision_at_1 |
|
value: 2.937 |
|
- type: precision_at_10 |
|
value: 1.089 |
|
- type: precision_at_100 |
|
value: 0.27699999999999997 |
|
- type: precision_at_1000 |
|
value: 0.051000000000000004 |
|
- type: precision_at_3 |
|
value: 1.9290000000000003 |
|
- type: precision_at_5 |
|
value: 1.547 |
|
- type: recall_at_1 |
|
value: 2.88 |
|
- type: recall_at_10 |
|
value: 10.578 |
|
- type: recall_at_100 |
|
value: 26.267000000000003 |
|
- type: recall_at_1000 |
|
value: 47.589999999999996 |
|
- type: recall_at_3 |
|
value: 5.673 |
|
- type: recall_at_5 |
|
value: 7.545 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 81.51846785225717 |
|
- type: f1 |
|
value: 81.648869152345 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 60.37475345167653 |
|
- type: f1 |
|
value: 58.452649375517026 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 67.36824549699799 |
|
- type: f1 |
|
value: 65.35927434998516 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 63.12871907297212 |
|
- type: f1 |
|
value: 61.37620329272278 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 47.04553603442094 |
|
- type: f1 |
|
value: 46.20389912644561 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 52.282097649186255 |
|
- type: f1 |
|
value: 50.75489206473579 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 58.2421340629275 |
|
- type: f1 |
|
value: 40.11696046622642 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 45.069033530571986 |
|
- type: f1 |
|
value: 30.468468273374967 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 48.80920613742495 |
|
- type: f1 |
|
value: 32.65985375400447 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 44.337613529595984 |
|
- type: f1 |
|
value: 29.302047435606436 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 34.198637504481894 |
|
- type: f1 |
|
value: 22.063706032248408 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 43.11030741410488 |
|
- type: f1 |
|
value: 26.92408933648504 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
metrics: |
|
- type: accuracy |
|
value: 37.79421654337593 |
|
- type: f1 |
|
value: 36.81580701507746 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
metrics: |
|
- type: accuracy |
|
value: 23.722259583053127 |
|
- type: f1 |
|
value: 23.235269695764273 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
metrics: |
|
- type: accuracy |
|
value: 29.64021519838601 |
|
- type: f1 |
|
value: 28.273175327650137 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
metrics: |
|
- type: accuracy |
|
value: 39.4754539340955 |
|
- type: f1 |
|
value: 39.25997361415121 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
metrics: |
|
- type: accuracy |
|
value: 26.550100874243444 |
|
- type: f1 |
|
value: 25.607924873522975 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
metrics: |
|
- type: accuracy |
|
value: 38.78278412911904 |
|
- type: f1 |
|
value: 37.64180582626517 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
metrics: |
|
- type: accuracy |
|
value: 43.557498318762605 |
|
- type: f1 |
|
value: 41.35305173800667 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 40.39340954942838 |
|
- type: f1 |
|
value: 38.33393219528934 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
metrics: |
|
- type: accuracy |
|
value: 37.28648285137861 |
|
- type: f1 |
|
value: 36.64005906680284 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 58.080026899798256 |
|
- type: f1 |
|
value: 56.49243881660991 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 41.176866173503704 |
|
- type: f1 |
|
value: 40.66779962225799 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
metrics: |
|
- type: accuracy |
|
value: 36.422326832548755 |
|
- type: f1 |
|
value: 34.6441738042885 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
metrics: |
|
- type: accuracy |
|
value: 38.75588433086752 |
|
- type: f1 |
|
value: 37.26725894668694 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 43.67182246133153 |
|
- type: f1 |
|
value: 42.351846624566605 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
metrics: |
|
- type: accuracy |
|
value: 31.980497646267658 |
|
- type: f1 |
|
value: 30.557928872809008 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 28.039677202420982 |
|
- type: f1 |
|
value: 28.428418145508306 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
metrics: |
|
- type: accuracy |
|
value: 38.13718897108272 |
|
- type: f1 |
|
value: 37.057406988196874 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
metrics: |
|
- type: accuracy |
|
value: 26.05245460659045 |
|
- type: f1 |
|
value: 25.25483953344816 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
metrics: |
|
- type: accuracy |
|
value: 41.156691324815064 |
|
- type: f1 |
|
value: 40.83715033247605 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
metrics: |
|
- type: accuracy |
|
value: 38.62811028917284 |
|
- type: f1 |
|
value: 37.67691901246032 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
metrics: |
|
- type: accuracy |
|
value: 44.0383322125084 |
|
- type: f1 |
|
value: 43.77259010877456 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 46.20712844653666 |
|
- type: f1 |
|
value: 44.66632875940824 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
metrics: |
|
- type: accuracy |
|
value: 37.60591795561533 |
|
- type: f1 |
|
value: 36.581071742378015 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
metrics: |
|
- type: accuracy |
|
value: 24.47209145931405 |
|
- type: f1 |
|
value: 24.238209697895606 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
metrics: |
|
- type: accuracy |
|
value: 26.23739071956961 |
|
- type: f1 |
|
value: 25.378783150845052 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
metrics: |
|
- type: accuracy |
|
value: 17.831203765971754 |
|
- type: f1 |
|
value: 17.275078420466343 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
metrics: |
|
- type: accuracy |
|
value: 37.266308002689975 |
|
- type: f1 |
|
value: 36.92473791708214 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
metrics: |
|
- type: accuracy |
|
value: 40.93140551445864 |
|
- type: f1 |
|
value: 40.825227889641965 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
metrics: |
|
- type: accuracy |
|
value: 17.88500336247478 |
|
- type: f1 |
|
value: 17.621569082971817 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
metrics: |
|
- type: accuracy |
|
value: 32.975790181573636 |
|
- type: f1 |
|
value: 33.402014633349665 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
metrics: |
|
- type: accuracy |
|
value: 40.91123066577001 |
|
- type: f1 |
|
value: 40.09538559124075 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
metrics: |
|
- type: accuracy |
|
value: 17.834566240753194 |
|
- type: f1 |
|
value: 17.006381849454314 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
metrics: |
|
- type: accuracy |
|
value: 39.47881640887693 |
|
- type: f1 |
|
value: 37.819934317839305 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
metrics: |
|
- type: accuracy |
|
value: 41.76193678547412 |
|
- type: f1 |
|
value: 40.281991759509694 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
metrics: |
|
- type: accuracy |
|
value: 42.61936785474109 |
|
- type: f1 |
|
value: 40.83673914649905 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
metrics: |
|
- type: accuracy |
|
value: 44.54270342972427 |
|
- type: f1 |
|
value: 43.45243164278448 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
metrics: |
|
- type: accuracy |
|
value: 39.96973772696705 |
|
- type: f1 |
|
value: 38.74209466530094 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
metrics: |
|
- type: accuracy |
|
value: 37.461331540013454 |
|
- type: f1 |
|
value: 36.91132021821187 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
metrics: |
|
- type: accuracy |
|
value: 38.28850033624748 |
|
- type: f1 |
|
value: 37.37259394049676 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
metrics: |
|
- type: accuracy |
|
value: 40.95494283792872 |
|
- type: f1 |
|
value: 39.767707902869084 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
metrics: |
|
- type: accuracy |
|
value: 41.85272360457296 |
|
- type: f1 |
|
value: 40.42848260365438 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
metrics: |
|
- type: accuracy |
|
value: 38.328850033624754 |
|
- type: f1 |
|
value: 36.90334596675622 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
metrics: |
|
- type: accuracy |
|
value: 19.031607262945528 |
|
- type: f1 |
|
value: 18.66510306325761 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
metrics: |
|
- type: accuracy |
|
value: 19.38466711499664 |
|
- type: f1 |
|
value: 19.186399376652535 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 34.088769334229994 |
|
- type: f1 |
|
value: 34.20383086009429 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
metrics: |
|
- type: accuracy |
|
value: 40.285810356422324 |
|
- type: f1 |
|
value: 39.361500249640414 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
metrics: |
|
- type: accuracy |
|
value: 38.860121049092136 |
|
- type: f1 |
|
value: 37.81916859627235 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
metrics: |
|
- type: accuracy |
|
value: 27.834566240753194 |
|
- type: f1 |
|
value: 26.898389386106487 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
metrics: |
|
- type: accuracy |
|
value: 38.70544720914593 |
|
- type: f1 |
|
value: 38.280026442024415 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
metrics: |
|
- type: accuracy |
|
value: 45.78009414929387 |
|
- type: f1 |
|
value: 44.21526778674136 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
metrics: |
|
- type: accuracy |
|
value: 42.32010759919301 |
|
- type: f1 |
|
value: 42.25772977490916 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
metrics: |
|
- type: accuracy |
|
value: 40.24546065904506 |
|
- type: f1 |
|
value: 38.79924050989544 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
metrics: |
|
- type: accuracy |
|
value: 25.68930733019502 |
|
- type: f1 |
|
value: 25.488166279162712 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
metrics: |
|
- type: accuracy |
|
value: 32.39744451916611 |
|
- type: f1 |
|
value: 31.863029579075775 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
metrics: |
|
- type: accuracy |
|
value: 40.53127101546738 |
|
- type: f1 |
|
value: 39.707079033948936 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
metrics: |
|
- type: accuracy |
|
value: 27.23268325487559 |
|
- type: f1 |
|
value: 26.443653281858793 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
metrics: |
|
- type: accuracy |
|
value: 38.69872225958305 |
|
- type: f1 |
|
value: 36.55930387892567 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
metrics: |
|
- type: accuracy |
|
value: 44.75453934095494 |
|
- type: f1 |
|
value: 42.87356484024154 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
metrics: |
|
- type: accuracy |
|
value: 41.355077336919976 |
|
- type: f1 |
|
value: 39.82365179458047 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
metrics: |
|
- type: accuracy |
|
value: 38.43981170141224 |
|
- type: f1 |
|
value: 37.02538368296387 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
metrics: |
|
- type: accuracy |
|
value: 66.33826496301278 |
|
- type: f1 |
|
value: 65.89634765029932 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
metrics: |
|
- type: accuracy |
|
value: 44.17955615332885 |
|
- type: f1 |
|
value: 43.10228811620319 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
metrics: |
|
- type: accuracy |
|
value: 34.82851378614661 |
|
- type: f1 |
|
value: 33.95952441502803 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
metrics: |
|
- type: accuracy |
|
value: 40.561533288500335 |
|
- type: f1 |
|
value: 38.04939011733627 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
metrics: |
|
- type: accuracy |
|
value: 45.917955615332886 |
|
- type: f1 |
|
value: 44.65741971572902 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
metrics: |
|
- type: accuracy |
|
value: 32.08473436449227 |
|
- type: f1 |
|
value: 29.53932929808133 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
metrics: |
|
- type: accuracy |
|
value: 28.369199731002016 |
|
- type: f1 |
|
value: 27.52902837981212 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
metrics: |
|
- type: accuracy |
|
value: 39.49226630800269 |
|
- type: f1 |
|
value: 37.3272340470504 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
metrics: |
|
- type: accuracy |
|
value: 25.904505716207133 |
|
- type: f1 |
|
value: 24.547396574853444 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
metrics: |
|
- type: accuracy |
|
value: 40.95830531271016 |
|
- type: f1 |
|
value: 40.177843177422226 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
metrics: |
|
- type: accuracy |
|
value: 38.564223268325485 |
|
- type: f1 |
|
value: 37.35307758495248 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
metrics: |
|
- type: accuracy |
|
value: 46.58708809683928 |
|
- type: f1 |
|
value: 44.103900526804985 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
metrics: |
|
- type: accuracy |
|
value: 46.24747814391393 |
|
- type: f1 |
|
value: 45.4107101796664 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
metrics: |
|
- type: accuracy |
|
value: 39.6570275722932 |
|
- type: f1 |
|
value: 38.82737576832412 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
metrics: |
|
- type: accuracy |
|
value: 25.279085406859448 |
|
- type: f1 |
|
value: 23.662661686788493 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
metrics: |
|
- type: accuracy |
|
value: 28.97108271687962 |
|
- type: f1 |
|
value: 27.195758324189246 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
metrics: |
|
- type: accuracy |
|
value: 19.27370544720915 |
|
- type: f1 |
|
value: 18.694271924323637 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
metrics: |
|
- type: accuracy |
|
value: 35.729657027572294 |
|
- type: f1 |
|
value: 34.38287006177308 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
metrics: |
|
- type: accuracy |
|
value: 39.57296570275723 |
|
- type: f1 |
|
value: 38.074945140886925 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
metrics: |
|
- type: accuracy |
|
value: 19.895763281775388 |
|
- type: f1 |
|
value: 20.00931364846829 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
metrics: |
|
- type: accuracy |
|
value: 32.431069266980494 |
|
- type: f1 |
|
value: 31.395958664782576 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
metrics: |
|
- type: accuracy |
|
value: 42.32347007397445 |
|
- type: f1 |
|
value: 40.81374026314701 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
metrics: |
|
- type: accuracy |
|
value: 20.864156018829856 |
|
- type: f1 |
|
value: 20.409870408935436 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
metrics: |
|
- type: accuracy |
|
value: 40.47074646940148 |
|
- type: f1 |
|
value: 39.19044149415904 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
metrics: |
|
- type: accuracy |
|
value: 43.591123066577 |
|
- type: f1 |
|
value: 41.43420363064241 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
metrics: |
|
- type: accuracy |
|
value: 41.876260928043045 |
|
- type: f1 |
|
value: 41.192117676667614 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
metrics: |
|
- type: accuracy |
|
value: 46.30800268997983 |
|
- type: f1 |
|
value: 45.25536730126799 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
metrics: |
|
- type: accuracy |
|
value: 42.525218560860786 |
|
- type: f1 |
|
value: 41.02418109296485 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
metrics: |
|
- type: accuracy |
|
value: 35.94821788836584 |
|
- type: f1 |
|
value: 35.08598314806566 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
metrics: |
|
- type: accuracy |
|
value: 38.69199731002017 |
|
- type: f1 |
|
value: 37.68119408674127 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
metrics: |
|
- type: accuracy |
|
value: 40.474108944182916 |
|
- type: f1 |
|
value: 39.480530387013594 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
metrics: |
|
- type: accuracy |
|
value: 41.523201075991935 |
|
- type: f1 |
|
value: 40.20097996024383 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
metrics: |
|
- type: accuracy |
|
value: 39.54942837928716 |
|
- type: f1 |
|
value: 38.185561243338064 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
metrics: |
|
- type: accuracy |
|
value: 22.8782784129119 |
|
- type: f1 |
|
value: 22.239467186721456 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
metrics: |
|
- type: accuracy |
|
value: 20.51445864156019 |
|
- type: f1 |
|
value: 19.999047885530217 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
metrics: |
|
- type: accuracy |
|
value: 34.92602555480834 |
|
- type: f1 |
|
value: 33.24016717215723 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
metrics: |
|
- type: accuracy |
|
value: 40.74983187626093 |
|
- type: f1 |
|
value: 39.30274328728882 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
metrics: |
|
- type: accuracy |
|
value: 39.06859448554136 |
|
- type: f1 |
|
value: 39.21542039662971 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
metrics: |
|
- type: accuracy |
|
value: 29.747814391392062 |
|
- type: f1 |
|
value: 28.261836892220447 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
metrics: |
|
- type: accuracy |
|
value: 38.02286482851379 |
|
- type: f1 |
|
value: 37.8742438608697 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
metrics: |
|
- type: accuracy |
|
value: 48.550773369199725 |
|
- type: f1 |
|
value: 46.7399625882649 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
metrics: |
|
- type: accuracy |
|
value: 45.17821116341628 |
|
- type: f1 |
|
value: 44.84809741811729 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 28.301902023313875 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 24.932123582259287 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
metrics: |
|
- type: map |
|
value: 29.269341041468326 |
|
- type: mrr |
|
value: 30.132140876875717 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.2269999999999999 |
|
- type: map_at_10 |
|
value: 3.081 |
|
- type: map_at_100 |
|
value: 4.104 |
|
- type: map_at_1000 |
|
value: 4.989 |
|
- type: map_at_3 |
|
value: 2.221 |
|
- type: map_at_5 |
|
value: 2.535 |
|
- type: ndcg_at_1 |
|
value: 15.015 |
|
- type: ndcg_at_10 |
|
value: 11.805 |
|
- type: ndcg_at_100 |
|
value: 12.452 |
|
- type: ndcg_at_1000 |
|
value: 22.284000000000002 |
|
- type: ndcg_at_3 |
|
value: 13.257 |
|
- type: ndcg_at_5 |
|
value: 12.199 |
|
- type: precision_at_1 |
|
value: 16.409000000000002 |
|
- type: precision_at_10 |
|
value: 9.102 |
|
- type: precision_at_100 |
|
value: 3.678 |
|
- type: precision_at_1000 |
|
value: 1.609 |
|
- type: precision_at_3 |
|
value: 12.797 |
|
- type: precision_at_5 |
|
value: 10.464 |
|
- type: recall_at_1 |
|
value: 1.2269999999999999 |
|
- type: recall_at_10 |
|
value: 5.838 |
|
- type: recall_at_100 |
|
value: 15.716 |
|
- type: recall_at_1000 |
|
value: 48.837 |
|
- type: recall_at_3 |
|
value: 2.828 |
|
- type: recall_at_5 |
|
value: 3.697 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.515 |
|
- type: map_at_10 |
|
value: 5.884 |
|
- type: map_at_100 |
|
value: 6.510000000000001 |
|
- type: map_at_1000 |
|
value: 6.598999999999999 |
|
- type: map_at_3 |
|
value: 4.8919999999999995 |
|
- type: map_at_5 |
|
value: 5.391 |
|
- type: ndcg_at_1 |
|
value: 4.056 |
|
- type: ndcg_at_10 |
|
value: 7.6259999999999994 |
|
- type: ndcg_at_100 |
|
value: 11.08 |
|
- type: ndcg_at_1000 |
|
value: 13.793 |
|
- type: ndcg_at_3 |
|
value: 5.537 |
|
- type: ndcg_at_5 |
|
value: 6.45 |
|
- type: precision_at_1 |
|
value: 4.056 |
|
- type: precision_at_10 |
|
value: 1.4569999999999999 |
|
- type: precision_at_100 |
|
value: 0.347 |
|
- type: precision_at_1000 |
|
value: 0.061 |
|
- type: precision_at_3 |
|
value: 2.6069999999999998 |
|
- type: precision_at_5 |
|
value: 2.086 |
|
- type: recall_at_1 |
|
value: 3.515 |
|
- type: recall_at_10 |
|
value: 12.312 |
|
- type: recall_at_100 |
|
value: 28.713 |
|
- type: recall_at_1000 |
|
value: 50.027 |
|
- type: recall_at_3 |
|
value: 6.701 |
|
- type: recall_at_5 |
|
value: 8.816 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 61.697 |
|
- type: map_at_10 |
|
value: 74.20400000000001 |
|
- type: map_at_100 |
|
value: 75.023 |
|
- type: map_at_1000 |
|
value: 75.059 |
|
- type: map_at_3 |
|
value: 71.265 |
|
- type: map_at_5 |
|
value: 73.001 |
|
- type: ndcg_at_1 |
|
value: 70.95 |
|
- type: ndcg_at_10 |
|
value: 78.96 |
|
- type: ndcg_at_100 |
|
value: 81.26 |
|
- type: ndcg_at_1000 |
|
value: 81.679 |
|
- type: ndcg_at_3 |
|
value: 75.246 |
|
- type: ndcg_at_5 |
|
value: 77.092 |
|
- type: precision_at_1 |
|
value: 70.95 |
|
- type: precision_at_10 |
|
value: 11.998000000000001 |
|
- type: precision_at_100 |
|
value: 1.451 |
|
- type: precision_at_1000 |
|
value: 0.154 |
|
- type: precision_at_3 |
|
value: 32.629999999999995 |
|
- type: precision_at_5 |
|
value: 21.573999999999998 |
|
- type: recall_at_1 |
|
value: 61.697 |
|
- type: recall_at_10 |
|
value: 88.23299999999999 |
|
- type: recall_at_100 |
|
value: 96.961 |
|
- type: recall_at_1000 |
|
value: 99.401 |
|
- type: recall_at_3 |
|
value: 77.689 |
|
- type: recall_at_5 |
|
value: 82.745 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
metrics: |
|
- type: v_measure |
|
value: 33.75741018380938 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 41.00799910099266 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.72 |
|
- type: map_at_10 |
|
value: 3.8240000000000003 |
|
- type: map_at_100 |
|
value: 4.727 |
|
- type: map_at_1000 |
|
value: 4.932 |
|
- type: map_at_3 |
|
value: 2.867 |
|
- type: map_at_5 |
|
value: 3.3230000000000004 |
|
- type: ndcg_at_1 |
|
value: 8.5 |
|
- type: ndcg_at_10 |
|
value: 7.133000000000001 |
|
- type: ndcg_at_100 |
|
value: 11.911 |
|
- type: ndcg_at_1000 |
|
value: 16.962 |
|
- type: ndcg_at_3 |
|
value: 6.763 |
|
- type: ndcg_at_5 |
|
value: 5.832 |
|
- type: precision_at_1 |
|
value: 8.5 |
|
- type: precision_at_10 |
|
value: 3.6799999999999997 |
|
- type: precision_at_100 |
|
value: 1.0670000000000002 |
|
- type: precision_at_1000 |
|
value: 0.22999999999999998 |
|
- type: precision_at_3 |
|
value: 6.2330000000000005 |
|
- type: precision_at_5 |
|
value: 5.0200000000000005 |
|
- type: recall_at_1 |
|
value: 1.72 |
|
- type: recall_at_10 |
|
value: 7.487000000000001 |
|
- type: recall_at_100 |
|
value: 21.683 |
|
- type: recall_at_1000 |
|
value: 46.688 |
|
- type: recall_at_3 |
|
value: 3.798 |
|
- type: recall_at_5 |
|
value: 5.113 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.96286245858941 |
|
- type: cos_sim_spearman |
|
value: 74.57093488947429 |
|
- type: euclidean_pearson |
|
value: 75.50377970259402 |
|
- type: euclidean_spearman |
|
value: 71.7498004622999 |
|
- type: manhattan_pearson |
|
value: 75.3256836091382 |
|
- type: manhattan_spearman |
|
value: 71.80676733410375 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.20938796088339 |
|
- type: cos_sim_spearman |
|
value: 69.16914010333394 |
|
- type: euclidean_pearson |
|
value: 79.33415250097545 |
|
- type: euclidean_spearman |
|
value: 71.46707320292745 |
|
- type: manhattan_pearson |
|
value: 79.73669837981976 |
|
- type: manhattan_spearman |
|
value: 71.87919511134902 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.401935081936 |
|
- type: cos_sim_spearman |
|
value: 77.23446219694267 |
|
- type: euclidean_pearson |
|
value: 74.61017160439877 |
|
- type: euclidean_spearman |
|
value: 75.85871531365609 |
|
- type: manhattan_pearson |
|
value: 74.83034779539724 |
|
- type: manhattan_spearman |
|
value: 75.95948993588429 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.35551963935667 |
|
- type: cos_sim_spearman |
|
value: 70.98892671568665 |
|
- type: euclidean_pearson |
|
value: 73.24467338564628 |
|
- type: euclidean_spearman |
|
value: 71.97533151639425 |
|
- type: manhattan_pearson |
|
value: 73.2776559359938 |
|
- type: manhattan_spearman |
|
value: 72.2221421456084 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.05293131911803 |
|
- type: cos_sim_spearman |
|
value: 79.7379478259805 |
|
- type: euclidean_pearson |
|
value: 78.17016171851057 |
|
- type: euclidean_spearman |
|
value: 78.76038607583105 |
|
- type: manhattan_pearson |
|
value: 78.4994607532332 |
|
- type: manhattan_spearman |
|
value: 79.13026720132872 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.04750373932828 |
|
- type: cos_sim_spearman |
|
value: 77.93230986462234 |
|
- type: euclidean_pearson |
|
value: 75.8320302521164 |
|
- type: euclidean_spearman |
|
value: 76.83154481579385 |
|
- type: manhattan_pearson |
|
value: 75.98713517720608 |
|
- type: manhattan_spearman |
|
value: 76.95479705521507 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 43.0464619152799 |
|
- type: cos_sim_spearman |
|
value: 45.65606588928089 |
|
- type: euclidean_pearson |
|
value: 45.69437788355499 |
|
- type: euclidean_spearman |
|
value: 45.08552742346606 |
|
- type: manhattan_pearson |
|
value: 45.87166698903681 |
|
- type: manhattan_spearman |
|
value: 45.155963016434164 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 53.27469278912148 |
|
- type: cos_sim_spearman |
|
value: 54.16113207623789 |
|
- type: euclidean_pearson |
|
value: 55.97026429327157 |
|
- type: euclidean_spearman |
|
value: 54.71320909074608 |
|
- type: manhattan_pearson |
|
value: 56.12511774278802 |
|
- type: manhattan_spearman |
|
value: 55.22875659158676 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 1.5482997790039945 |
|
- type: cos_sim_spearman |
|
value: 1.7208386347363582 |
|
- type: euclidean_pearson |
|
value: 6.727915670345885 |
|
- type: euclidean_spearman |
|
value: 6.112826908474543 |
|
- type: manhattan_pearson |
|
value: 4.94386093060865 |
|
- type: manhattan_spearman |
|
value: 5.018174110623732 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 27.5420218362265 |
|
- type: cos_sim_spearman |
|
value: 25.483838431031007 |
|
- type: euclidean_pearson |
|
value: 6.268684143856358 |
|
- type: euclidean_spearman |
|
value: 5.877961421091679 |
|
- type: manhattan_pearson |
|
value: 2.667237739227861 |
|
- type: manhattan_spearman |
|
value: 2.5683839956554775 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.32029757646663 |
|
- type: cos_sim_spearman |
|
value: 87.32720847297225 |
|
- type: euclidean_pearson |
|
value: 81.12594485791254 |
|
- type: euclidean_spearman |
|
value: 81.1531079489332 |
|
- type: manhattan_pearson |
|
value: 81.32899414704019 |
|
- type: manhattan_spearman |
|
value: 81.3897040261192 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 4.37162299241808 |
|
- type: cos_sim_spearman |
|
value: 2.0879072561774543 |
|
- type: euclidean_pearson |
|
value: 3.0725243785454595 |
|
- type: euclidean_spearman |
|
value: 5.3721339279483535 |
|
- type: manhattan_pearson |
|
value: 4.867795293367359 |
|
- type: manhattan_spearman |
|
value: 7.9397069840018775 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 20.306030448858603 |
|
- type: cos_sim_spearman |
|
value: 21.93220782551375 |
|
- type: euclidean_pearson |
|
value: 3.878631934602361 |
|
- type: euclidean_spearman |
|
value: 5.171796902725965 |
|
- type: manhattan_pearson |
|
value: 7.13020644036815 |
|
- type: manhattan_spearman |
|
value: 7.707315591498748 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.81873207478459 |
|
- type: cos_sim_spearman |
|
value: 67.80273445636502 |
|
- type: euclidean_pearson |
|
value: 70.60654682977268 |
|
- type: euclidean_spearman |
|
value: 69.4566208379486 |
|
- type: manhattan_pearson |
|
value: 70.9548461896642 |
|
- type: manhattan_spearman |
|
value: 69.78323323058773 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 21.366487281202602 |
|
- type: cos_sim_spearman |
|
value: 18.90627528698481 |
|
- type: euclidean_pearson |
|
value: 2.3390998579461995 |
|
- type: euclidean_spearman |
|
value: 4.151213674012541 |
|
- type: manhattan_pearson |
|
value: 2.234831868844863 |
|
- type: manhattan_spearman |
|
value: 4.555291328501442 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 20.73153177251085 |
|
- type: cos_sim_spearman |
|
value: 16.3855949033176 |
|
- type: euclidean_pearson |
|
value: 8.734648741714238 |
|
- type: euclidean_spearman |
|
value: 10.75672244732182 |
|
- type: manhattan_pearson |
|
value: 7.536654126608877 |
|
- type: manhattan_spearman |
|
value: 8.330065460047296 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.618435024084253 |
|
- type: cos_sim_spearman |
|
value: 23.488974089577816 |
|
- type: euclidean_pearson |
|
value: 3.1310350304707866 |
|
- type: euclidean_spearman |
|
value: 3.1242598481634665 |
|
- type: manhattan_pearson |
|
value: 1.1096752982707008 |
|
- type: manhattan_spearman |
|
value: 1.4591693078765848 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.17638344661753 |
|
- type: cos_sim_spearman |
|
value: 59.636760071130865 |
|
- type: euclidean_pearson |
|
value: 56.68753290255448 |
|
- type: euclidean_spearman |
|
value: 57.613280258574484 |
|
- type: manhattan_pearson |
|
value: 56.92312052723706 |
|
- type: manhattan_spearman |
|
value: 57.76774918418505 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 10.322254716987457 |
|
- type: cos_sim_spearman |
|
value: 11.0033092996862 |
|
- type: euclidean_pearson |
|
value: 6.006926471684402 |
|
- type: euclidean_spearman |
|
value: 10.972140246688376 |
|
- type: manhattan_pearson |
|
value: 5.933298751861177 |
|
- type: manhattan_spearman |
|
value: 11.030111585680233 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 43.38031880545056 |
|
- type: cos_sim_spearman |
|
value: 43.05358201410913 |
|
- type: euclidean_pearson |
|
value: 42.72327196362553 |
|
- type: euclidean_spearman |
|
value: 42.55163899944477 |
|
- type: manhattan_pearson |
|
value: 44.01557499780587 |
|
- type: manhattan_spearman |
|
value: 43.12473221615855 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 4.291290504363136 |
|
- type: cos_sim_spearman |
|
value: 14.912727487893479 |
|
- type: euclidean_pearson |
|
value: 3.2855132112394485 |
|
- type: euclidean_spearman |
|
value: 16.575204463951025 |
|
- type: manhattan_pearson |
|
value: 3.2398776723465814 |
|
- type: manhattan_spearman |
|
value: 16.841985772913855 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 4.102739498555817 |
|
- type: cos_sim_spearman |
|
value: 3.818238576547375 |
|
- type: euclidean_pearson |
|
value: 2.3181033496453556 |
|
- type: euclidean_spearman |
|
value: 5.1826811802703565 |
|
- type: manhattan_pearson |
|
value: 4.8006179265256455 |
|
- type: manhattan_spearman |
|
value: 6.738401400306252 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 2.38765395226737 |
|
- type: cos_sim_spearman |
|
value: 5.173899391162327 |
|
- type: euclidean_pearson |
|
value: 3.0710263954769825 |
|
- type: euclidean_spearman |
|
value: 5.04922290903982 |
|
- type: manhattan_pearson |
|
value: 3.7826314109861703 |
|
- type: manhattan_spearman |
|
value: 5.042238232170212 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 7.6735490672676345 |
|
- type: cos_sim_spearman |
|
value: 3.3631215256878892 |
|
- type: euclidean_pearson |
|
value: 4.64331702652217 |
|
- type: euclidean_spearman |
|
value: 3.6129205171334324 |
|
- type: manhattan_pearson |
|
value: 4.011231736076196 |
|
- type: manhattan_spearman |
|
value: 3.233959766173701 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 0.06167614416104335 |
|
- type: cos_sim_spearman |
|
value: 6.521685391703255 |
|
- type: euclidean_pearson |
|
value: 4.884572579069032 |
|
- type: euclidean_spearman |
|
value: 5.59058032900239 |
|
- type: manhattan_pearson |
|
value: 6.139838096573897 |
|
- type: manhattan_spearman |
|
value: 5.0060884837066215 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 53.19490347682836 |
|
- type: cos_sim_spearman |
|
value: 54.56055727079527 |
|
- type: euclidean_pearson |
|
value: 52.55574442039842 |
|
- type: euclidean_spearman |
|
value: 52.94640154371587 |
|
- type: manhattan_pearson |
|
value: 53.275993040454196 |
|
- type: manhattan_spearman |
|
value: 53.174561503510155 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 51.151158530122146 |
|
- type: cos_sim_spearman |
|
value: 53.926925081736655 |
|
- type: euclidean_pearson |
|
value: 44.55629287737235 |
|
- type: euclidean_spearman |
|
value: 46.222372143731384 |
|
- type: manhattan_pearson |
|
value: 42.831322151459005 |
|
- type: manhattan_spearman |
|
value: 45.70991764985799 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.36194885126792 |
|
- type: cos_sim_spearman |
|
value: 32.739632941633836 |
|
- type: euclidean_pearson |
|
value: 29.83135800843496 |
|
- type: euclidean_spearman |
|
value: 31.114406001326923 |
|
- type: manhattan_pearson |
|
value: 31.264502938148286 |
|
- type: manhattan_spearman |
|
value: 33.3112040753475 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 35.23883630335275 |
|
- type: cos_sim_spearman |
|
value: 33.67797082086704 |
|
- type: euclidean_pearson |
|
value: 34.878640693874544 |
|
- type: euclidean_spearman |
|
value: 33.525189235133496 |
|
- type: manhattan_pearson |
|
value: 34.22761246389947 |
|
- type: manhattan_spearman |
|
value: 32.713218497609176 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 19.809302548119547 |
|
- type: cos_sim_spearman |
|
value: 20.540370202115497 |
|
- type: euclidean_pearson |
|
value: 23.006803962133016 |
|
- type: euclidean_spearman |
|
value: 22.96270653079511 |
|
- type: manhattan_pearson |
|
value: 25.40168317585851 |
|
- type: manhattan_spearman |
|
value: 25.421508137540865 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 20.393500955410488 |
|
- type: cos_sim_spearman |
|
value: 26.705713693011603 |
|
- type: euclidean_pearson |
|
value: 18.168376767724585 |
|
- type: euclidean_spearman |
|
value: 19.260826601517245 |
|
- type: manhattan_pearson |
|
value: 18.302619990671527 |
|
- type: manhattan_spearman |
|
value: 19.4691037846159 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.58919983075148 |
|
- type: cos_sim_spearman |
|
value: 35.989722099974045 |
|
- type: euclidean_pearson |
|
value: 41.045112547574206 |
|
- type: euclidean_spearman |
|
value: 39.322301680629835 |
|
- type: manhattan_pearson |
|
value: 41.36802503205308 |
|
- type: manhattan_spearman |
|
value: 40.76270030293609 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.350936227950083 |
|
- type: cos_sim_spearman |
|
value: 25.108218032460343 |
|
- type: euclidean_pearson |
|
value: 28.61681094744849 |
|
- type: euclidean_spearman |
|
value: 27.350990203943592 |
|
- type: manhattan_pearson |
|
value: 30.527977072984513 |
|
- type: manhattan_spearman |
|
value: 26.403339990640813 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 20.056269198600322 |
|
- type: cos_sim_spearman |
|
value: 20.939990379746757 |
|
- type: euclidean_pearson |
|
value: 18.942765438962198 |
|
- type: euclidean_spearman |
|
value: 21.709842967237446 |
|
- type: manhattan_pearson |
|
value: 23.643909798655123 |
|
- type: manhattan_spearman |
|
value: 23.58828328071473 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 19.563740271419395 |
|
- type: cos_sim_spearman |
|
value: 5.634361698190111 |
|
- type: euclidean_pearson |
|
value: 16.833522619239474 |
|
- type: euclidean_spearman |
|
value: 16.903085094570333 |
|
- type: manhattan_pearson |
|
value: 5.805392712660814 |
|
- type: manhattan_spearman |
|
value: 16.903085094570333 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.00905671833966 |
|
- type: cos_sim_spearman |
|
value: 79.54269211027272 |
|
- type: euclidean_pearson |
|
value: 79.51954544247441 |
|
- type: euclidean_spearman |
|
value: 78.93670303434288 |
|
- type: manhattan_pearson |
|
value: 79.47610653340678 |
|
- type: manhattan_spearman |
|
value: 79.07344156719613 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
metrics: |
|
- type: map |
|
value: 68.35710819755543 |
|
- type: mrr |
|
value: 88.05442832403617 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.556 |
|
- type: map_at_10 |
|
value: 27.982000000000003 |
|
- type: map_at_100 |
|
value: 28.937 |
|
- type: map_at_1000 |
|
value: 29.058 |
|
- type: map_at_3 |
|
value: 25.644 |
|
- type: map_at_5 |
|
value: 26.996 |
|
- type: ndcg_at_1 |
|
value: 23.333000000000002 |
|
- type: ndcg_at_10 |
|
value: 31.787 |
|
- type: ndcg_at_100 |
|
value: 36.647999999999996 |
|
- type: ndcg_at_1000 |
|
value: 39.936 |
|
- type: ndcg_at_3 |
|
value: 27.299 |
|
- type: ndcg_at_5 |
|
value: 29.659000000000002 |
|
- type: precision_at_1 |
|
value: 23.333000000000002 |
|
- type: precision_at_10 |
|
value: 4.867 |
|
- type: precision_at_100 |
|
value: 0.743 |
|
- type: precision_at_1000 |
|
value: 0.10200000000000001 |
|
- type: precision_at_3 |
|
value: 11.333 |
|
- type: precision_at_5 |
|
value: 8.133 |
|
- type: recall_at_1 |
|
value: 21.556 |
|
- type: recall_at_10 |
|
value: 42.333 |
|
- type: recall_at_100 |
|
value: 65.706 |
|
- type: recall_at_1000 |
|
value: 91.489 |
|
- type: recall_at_3 |
|
value: 30.361 |
|
- type: recall_at_5 |
|
value: 36.222 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.49306930693069 |
|
- type: cos_sim_ap |
|
value: 77.7308550291728 |
|
- type: cos_sim_f1 |
|
value: 71.78978681209718 |
|
- type: cos_sim_precision |
|
value: 71.1897738446411 |
|
- type: cos_sim_recall |
|
value: 72.39999999999999 |
|
- type: dot_accuracy |
|
value: 99.08118811881188 |
|
- type: dot_ap |
|
value: 30.267748833368234 |
|
- type: dot_f1 |
|
value: 34.335201222618444 |
|
- type: dot_precision |
|
value: 34.994807892004154 |
|
- type: dot_recall |
|
value: 33.7 |
|
- type: euclidean_accuracy |
|
value: 99.51683168316832 |
|
- type: euclidean_ap |
|
value: 78.64498778235628 |
|
- type: euclidean_f1 |
|
value: 73.09149972929075 |
|
- type: euclidean_precision |
|
value: 79.69303423848878 |
|
- type: euclidean_recall |
|
value: 67.5 |
|
- type: manhattan_accuracy |
|
value: 99.53168316831683 |
|
- type: manhattan_ap |
|
value: 79.45274878693958 |
|
- type: manhattan_f1 |
|
value: 74.19863373620599 |
|
- type: manhattan_precision |
|
value: 78.18383167220377 |
|
- type: manhattan_recall |
|
value: 70.6 |
|
- type: max_accuracy |
|
value: 99.53168316831683 |
|
- type: max_ap |
|
value: 79.45274878693958 |
|
- type: max_f1 |
|
value: 74.19863373620599 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
metrics: |
|
- type: v_measure |
|
value: 44.59127540530939 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 28.230204578753636 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
metrics: |
|
- type: map |
|
value: 39.96520488022785 |
|
- type: mrr |
|
value: 40.189248047703934 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.56303767714449 |
|
- type: cos_sim_spearman |
|
value: 30.256847004390487 |
|
- type: dot_pearson |
|
value: 29.453520030995005 |
|
- type: dot_spearman |
|
value: 29.561732550926777 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.11299999999999999 |
|
- type: map_at_10 |
|
value: 0.733 |
|
- type: map_at_100 |
|
value: 3.313 |
|
- type: map_at_1000 |
|
value: 7.355 |
|
- type: map_at_3 |
|
value: 0.28200000000000003 |
|
- type: map_at_5 |
|
value: 0.414 |
|
- type: ndcg_at_1 |
|
value: 42.0 |
|
- type: ndcg_at_10 |
|
value: 39.31 |
|
- type: ndcg_at_100 |
|
value: 26.904 |
|
- type: ndcg_at_1000 |
|
value: 23.778 |
|
- type: ndcg_at_3 |
|
value: 42.775999999999996 |
|
- type: ndcg_at_5 |
|
value: 41.554 |
|
- type: precision_at_1 |
|
value: 48.0 |
|
- type: precision_at_10 |
|
value: 43.0 |
|
- type: precision_at_100 |
|
value: 27.08 |
|
- type: precision_at_1000 |
|
value: 11.014 |
|
- type: precision_at_3 |
|
value: 48.0 |
|
- type: precision_at_5 |
|
value: 45.6 |
|
- type: recall_at_1 |
|
value: 0.11299999999999999 |
|
- type: recall_at_10 |
|
value: 0.976 |
|
- type: recall_at_100 |
|
value: 5.888 |
|
- type: recall_at_1000 |
|
value: 22.634999999999998 |
|
- type: recall_at_3 |
|
value: 0.329 |
|
- type: recall_at_5 |
|
value: 0.518 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.645 |
|
- type: map_at_10 |
|
value: 4.1160000000000005 |
|
- type: map_at_100 |
|
value: 7.527 |
|
- type: map_at_1000 |
|
value: 8.677999999999999 |
|
- type: map_at_3 |
|
value: 1.6019999999999999 |
|
- type: map_at_5 |
|
value: 2.6 |
|
- type: ndcg_at_1 |
|
value: 10.204 |
|
- type: ndcg_at_10 |
|
value: 12.27 |
|
- type: ndcg_at_100 |
|
value: 22.461000000000002 |
|
- type: ndcg_at_1000 |
|
value: 33.543 |
|
- type: ndcg_at_3 |
|
value: 9.982000000000001 |
|
- type: ndcg_at_5 |
|
value: 11.498 |
|
- type: precision_at_1 |
|
value: 10.204 |
|
- type: precision_at_10 |
|
value: 12.245000000000001 |
|
- type: precision_at_100 |
|
value: 5.286 |
|
- type: precision_at_1000 |
|
value: 1.2630000000000001 |
|
- type: precision_at_3 |
|
value: 10.884 |
|
- type: precision_at_5 |
|
value: 13.061 |
|
- type: recall_at_1 |
|
value: 0.645 |
|
- type: recall_at_10 |
|
value: 8.996 |
|
- type: recall_at_100 |
|
value: 33.666000000000004 |
|
- type: recall_at_1000 |
|
value: 67.704 |
|
- type: recall_at_3 |
|
value: 2.504 |
|
- type: recall_at_5 |
|
value: 4.95 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
metrics: |
|
- type: accuracy |
|
value: 62.7862 |
|
- type: ap |
|
value: 10.958454618347831 |
|
- type: f1 |
|
value: 48.37243417046763 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
metrics: |
|
- type: accuracy |
|
value: 54.821731748726656 |
|
- type: f1 |
|
value: 55.14729314789282 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
metrics: |
|
- type: v_measure |
|
value: 28.24295128553035 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 81.5640460153782 |
|
- type: cos_sim_ap |
|
value: 57.094095366921536 |
|
- type: cos_sim_f1 |
|
value: 55.29607083563918 |
|
- type: cos_sim_precision |
|
value: 47.62631077216397 |
|
- type: cos_sim_recall |
|
value: 65.91029023746702 |
|
- type: dot_accuracy |
|
value: 78.81623651427549 |
|
- type: dot_ap |
|
value: 47.42989400382077 |
|
- type: dot_f1 |
|
value: 51.25944584382871 |
|
- type: dot_precision |
|
value: 42.55838271174625 |
|
- type: dot_recall |
|
value: 64.43271767810026 |
|
- type: euclidean_accuracy |
|
value: 80.29445073612685 |
|
- type: euclidean_ap |
|
value: 53.42012231336148 |
|
- type: euclidean_f1 |
|
value: 51.867783563504645 |
|
- type: euclidean_precision |
|
value: 45.4203013481364 |
|
- type: euclidean_recall |
|
value: 60.4485488126649 |
|
- type: manhattan_accuracy |
|
value: 80.2884901949097 |
|
- type: manhattan_ap |
|
value: 53.43205271323232 |
|
- type: manhattan_f1 |
|
value: 52.014165559982295 |
|
- type: manhattan_precision |
|
value: 44.796035074342356 |
|
- type: manhattan_recall |
|
value: 62.00527704485488 |
|
- type: max_accuracy |
|
value: 81.5640460153782 |
|
- type: max_ap |
|
value: 57.094095366921536 |
|
- type: max_f1 |
|
value: 55.29607083563918 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 86.63018589668955 |
|
- type: cos_sim_ap |
|
value: 80.51063771262909 |
|
- type: cos_sim_f1 |
|
value: 72.70810586950793 |
|
- type: cos_sim_precision |
|
value: 71.14123627790467 |
|
- type: cos_sim_recall |
|
value: 74.3455497382199 |
|
- type: dot_accuracy |
|
value: 82.41743315092948 |
|
- type: dot_ap |
|
value: 69.2393381283664 |
|
- type: dot_f1 |
|
value: 65.61346624814597 |
|
- type: dot_precision |
|
value: 59.43260638630257 |
|
- type: dot_recall |
|
value: 73.22913458577148 |
|
- type: euclidean_accuracy |
|
value: 86.49435324251951 |
|
- type: euclidean_ap |
|
value: 80.28100477250926 |
|
- type: euclidean_f1 |
|
value: 72.58242344489099 |
|
- type: euclidean_precision |
|
value: 67.44662568576906 |
|
- type: euclidean_recall |
|
value: 78.56482907299045 |
|
- type: manhattan_accuracy |
|
value: 86.59525749990297 |
|
- type: manhattan_ap |
|
value: 80.37850832566262 |
|
- type: manhattan_f1 |
|
value: 72.59435321233073 |
|
- type: manhattan_precision |
|
value: 68.19350473612991 |
|
- type: manhattan_recall |
|
value: 77.60240221743148 |
|
- type: max_accuracy |
|
value: 86.63018589668955 |
|
- type: max_ap |
|
value: 80.51063771262909 |
|
- type: max_f1 |
|
value: 72.70810586950793 |
|
--- |
|
|
|
# SGPT-125M-weightedmean-nli-bitfit |
|
|
|
## Usage |
|
|
|
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt |
|
|
|
## Evaluation Results |
|
|
|
For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters: |
|
``` |
|
{'batch_size': 64} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 1, |
|
"evaluation_steps": 880, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 0.0002 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 881, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
```bibtex |
|
@article{muennighoff2022sgpt, |
|
title={SGPT: GPT Sentence Embeddings for Semantic Search}, |
|
author={Muennighoff, Niklas}, |
|
journal={arXiv preprint arXiv:2202.08904}, |
|
year={2022} |
|
} |
|
``` |
|
|