File size: 2,690 Bytes
fb6eb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0abe7b
fb6eb90
 
 
 
 
 
 
 
 
2ac566b
 
fb6eb90
 
 
2ac566b
fb6eb90
 
 
2ac566b
fb6eb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: RoBERTa-base-finetuned-emotion
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: emotion
      type: emotion
      config: split
      split: test
      args: split
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.933
    - name: Precision
      type: precision
      value: 0.8945201216002613
    - name: Recall
      type: recall
      value: 0.9001524297208578
    - name: F1
      type: f1
      value: 0.8967563712384394
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# RoBERTa-base-finetuned-emotion

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [emotion](https://huggingface.co/datasets/dair-ai/emotion) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1629
- Accuracy: 0.933
- Precision: 0.8945
- Recall: 0.9002
- F1: 0.8968

## Model description

This is a RoBERTa model fine-tuned on the [emotion](https://huggingface.co/datasets/dair-ai/emotion) to determine whether a text is within any of the six categories: 
'sadness', 'joy', 'love', 'anger', 'fear', 'surprise'. The Trainer API was used to train the model.

## Intended uses & limitations



## Training and evaluation data

 🤗 ``load_dataset`` package was used to load the data from the hub. 

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5693        | 1.0   | 500  | 0.2305          | 0.9215   | 0.8814    | 0.8854 | 0.8818 |
| 0.1946        | 2.0   | 1000 | 0.1923          | 0.9235   | 0.8698    | 0.9268 | 0.8899 |
| 0.1297        | 3.0   | 1500 | 0.1514          | 0.933    | 0.9060    | 0.8879 | 0.8913 |
| 0.1041        | 4.0   | 2000 | 0.1545          | 0.9265   | 0.9165    | 0.8567 | 0.8789 |
| 0.0826        | 5.0   | 2500 | 0.1629          | 0.933    | 0.8945    | 0.9002 | 0.8968 |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3