|
# NanoLM-70M-Instruct-v1 |
|
|
|
[English](README.md) | 简体中文 |
|
|
|
|
|
## Introduction |
|
|
|
为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2)。 |
|
|
|
这是 NanoLM-70M-Instruct-v1。该模型目前仅支持**英文**。 |
|
|
|
|
|
## 模型详情 |
|
|
|
| Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len | |
|
| :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: | |
|
| 25M | 15M | MistralForCausalLM | 12 | 312 | 12 |2K| |
|
| **70M** | **42M** | **LlamaForCausalLM** | **12** | **576** | **9** | **2K** | |
|
| 0.3B | 180M | Qwen2ForCausalLM | 12 | 896 | 14 |4K| |
|
| 1B | 840M | Qwen2ForCausalLM | 18 | 1536 | 12 |4K| |
|
|
|
NanoLM-70M-Instruct-v1 的分词器和模型架构与 [SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M) 相同,但层数从30减少到12。 |
|
|
|
本质上是纯粹的 LLaMA 架构,即 LlamaForCausalLM。 |
|
|
|
因此,NanoLM-70M-Instruct-v1 的参数量只有 70 M。 |
|
|
|
尽管如此,NanoLM-70M-Instruct-v1 仍展示了指令跟随能力。 |
|
|
|
|
|
## 如何使用 |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = 'Mxode/NanoLM-70M-Instruct-v1' |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
text = "Why is it important for entrepreneurs to prioritize financial management?" |
|
prompt = tokenizer.apply_chat_template( |
|
[ |
|
{'role': 'system', 'content': 'You are a helpful assistant.'}, |
|
{'role': 'user', 'content': text} |
|
], |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_tensors='pt' |
|
).to('cuda:0') |
|
|
|
|
|
outputs = model.generate( |
|
prompt, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
temperature=0.7, |
|
repetition_penalty=1.1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
response = tokenizer.decode(outputs[0]) |
|
print(response) |
|
``` |