NanoLM-70M-Instruct-v1 / README_zh-CN.md
Mxode's picture
Update README_zh-CN.md
eb55317 verified
# NanoLM-70M-Instruct-v1
[English](README.md) | 简体中文
## Introduction
为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2)。
这是 NanoLM-70M-Instruct-v1。该模型目前仅支持**英文**
## 模型详情
| Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len |
| :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: |
| 25M | 15M | MistralForCausalLM | 12 | 312 | 12 |2K|
| **70M** | **42M** | **LlamaForCausalLM** | **12** | **576** | **9** | **2K** |
| 0.3B | 180M | Qwen2ForCausalLM | 12 | 896 | 14 |4K|
| 1B | 840M | Qwen2ForCausalLM | 18 | 1536 | 12 |4K|
NanoLM-70M-Instruct-v1 的分词器和模型架构与 [SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M) 相同,但层数从30减少到12。
本质上是纯粹的 LLaMA 架构,即 LlamaForCausalLM。
因此,NanoLM-70M-Instruct-v1 的参数量只有 70 M。
尽管如此,NanoLM-70M-Instruct-v1 仍展示了指令跟随能力。
## 如何使用
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = 'Mxode/NanoLM-70M-Instruct-v1'
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)
text = "Why is it important for entrepreneurs to prioritize financial management?"
prompt = tokenizer.apply_chat_template(
[
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': text}
],
add_generation_prompt=True,
tokenize=True,
return_tensors='pt'
).to('cuda:0')
outputs = model.generate(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=0.7,
repetition_penalty=1.1,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0])
print(response)
```