|
--- |
|
license: gpl-3.0 |
|
datasets: |
|
- Mxode/BiST |
|
language: |
|
- en |
|
- zh |
|
pipeline_tag: translation |
|
library_name: transformers |
|
--- |
|
# **NanoTranslator-L** |
|
|
|
English | [简体中文](README_zh-CN.md) |
|
|
|
## Introduction |
|
|
|
This is the **large** model of the NanoTranslator, currently supported only in **English to Chinese**. |
|
|
|
The ONNX version of the model is also available in the repository. |
|
|
|
All models are collected in the [NanoTranslator Collection](https://huggingface.co/collections/Mxode/nanotranslator-66e1de2ba352e926ae865bd2). |
|
|
|
| | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie | |
|
| :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | :--: | :--: | :--: | |
|
| [XXL2](https://huggingface.co/Mxode/NanoTranslator-XXL2) | 102 | LLaMA | SwiGLU | 16K | 1120 | 3072 | 6 | 16 | 8 | True | |
|
| [XXL](https://huggingface.co/Mxode/NanoTranslator-XXL) | 100 | LLaMA | SwiGLU | 16K | 768 | 4096 | 8 | 24 | 8 | True | |
|
| [XL](https://huggingface.co/Mxode/NanoTranslator-XL) | 78 | LLaMA | GeGLU | 16K | 768 | 4096 | 6 | 24 | 8 | True | |
|
| [L](https://huggingface.co/Mxode/NanoTranslator-L) | 49 | LLaMA | GeGLU | 16K | 512 | 2816 | 8 | 16 | 8 | True | |
|
| [M2](https://huggingface.co/Mxode/NanoTranslator-M2) | 22 | Qwen2 | GeGLU | 4K | 432 | 2304 | 6 | 24 | 8 | True | |
|
| [M](https://huggingface.co/Mxode/NanoTranslator-M) | 22 | LLaMA | SwiGLU | 8K | 256 | 1408 | 16 | 16 | 4 | True | |
|
| [S](https://huggingface.co/Mxode/NanoTranslator-S) | 9 | LLaMA | SwiGLU | 4K | 168 | 896 | 16 | 12 | 4 | True | |
|
| [XS](https://huggingface.co/Mxode/NanoTranslator-XS) | 2 | LLaMA | SwiGLU | 2K | 96 | 512 | 12 | 12 | 4 | True | |
|
|
|
- **P.** - Parameters (in million) |
|
- **V.** - vocab size |
|
- **H.** - hidden size |
|
- **I.** - intermediate size |
|
- **L.** - num layers |
|
- **A.H.** - num attention heads |
|
- **K.H.** - num kv heads |
|
- **Tie** - tie word embeddings |
|
|
|
|
|
|
|
## How to use |
|
|
|
Prompt format as follows: |
|
|
|
``` |
|
<|im_start|> {English Text} <|endoftext|> |
|
``` |
|
|
|
### Directly using transformers |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_path = 'Mxode/NanoTranslator-L' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
|
|
def translate(text: str, model, **kwargs): |
|
generation_args = dict( |
|
max_new_tokens = kwargs.pop("max_new_tokens", 512), |
|
do_sample = kwargs.pop("do_sample", True), |
|
temperature = kwargs.pop("temperature", 0.55), |
|
top_p = kwargs.pop("top_p", 0.8), |
|
top_k = kwargs.pop("top_k", 40), |
|
**kwargs |
|
) |
|
|
|
prompt = "<|im_start|>" + text + "<|endoftext|>" |
|
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate(model_inputs.input_ids, **generation_args) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
text = "Each step of the cell cycle is monitored by internal." |
|
|
|
response = translate(text, model, max_new_tokens=64, do_sample=False) |
|
print(response) |
|
``` |
|
|
|
|
|
### ONNX |
|
|
|
It has been measured that reasoning with ONNX models will be **2-10 times faster** than reasoning directly with transformers models. |
|
|
|
You should switch to [onnx branch](https://huggingface.co/Mxode/NanoTranslator-L/tree/onnx) manually and download to local. |
|
|
|
reference docs: |
|
|
|
- [Export to ONNX](https://huggingface.co/docs/transformers/serialization) |
|
- [Inference pipelines with the ONNX Runtime accelerator](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines) |
|
|
|
**Using ORTModelForCausalLM** |
|
|
|
```python |
|
from optimum.onnxruntime import ORTModelForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
model_path = "your/folder/to/onnx_model" |
|
|
|
ort_model = ORTModelForCausalLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
text = "Each step of the cell cycle is monitored by internal." |
|
|
|
response = translate(text, ort_model, max_new_tokens=64, do_sample=False) |
|
print(response) |
|
``` |
|
|
|
**Using pipeline** |
|
|
|
```python |
|
from optimum.pipelines import pipeline |
|
|
|
model_path = "your/folder/to/onnx_model" |
|
pipe = pipeline("text-generation", model=model_path, accelerator="ort") |
|
|
|
text = "Each step of the cell cycle is monitored by internal." |
|
|
|
response = pipe(text, max_new_tokens=64, do_sample=False) |
|
response |
|
``` |
|
|