|
# Spider-NQ: Context Encoder |
|
|
|
This is the context encoder of the model fine-tuned on Natural Questions (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708). |
|
|
|
## Usage |
|
|
|
We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both. |
|
|
|
**Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token |
|
type ids are all 0-s. |
|
|
|
An example usage: |
|
|
|
```python |
|
from transformers import AutoTokenizer, DPRContextEncoder |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-nq-ctx-encoder") |
|
model = DPRContextEncoder.from_pretrained("NAACL2022/spider-nq-ctx-encoder") |
|
|
|
title = "Sauron" |
|
context = "Sauron is the title character and main antagonist of J. R. R. Tolkien's \"The Lord of the Rings\"." |
|
|
|
input_dict = tokenizer(title, context, return_tensors="pt") |
|
del input_dict["token_type_ids"] |
|
|
|
outputs = model(**input_dict) |
|
``` |
|
|