Edit model card

Intent-classification-BERT-Large-Ashuv2

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7819
  • Accuracy: 0.8571
  • F1: 0.7838
  • Precision: 0.7803
  • Recall: 0.7898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.4771 0.62 10 1.4650 0.5484 0.3724 0.3262 0.4815
1.1928 1.25 20 1.2691 0.5968 0.4620 0.4652 0.5370
0.9911 1.88 30 1.1678 0.6129 0.4794 0.4577 0.5556
0.7512 2.5 40 0.9525 0.6774 0.5424 0.4873 0.6296
0.7064 3.12 50 0.8495 0.6613 0.5319 0.4973 0.6111
0.5449 3.75 60 0.8052 0.6774 0.5744 0.6563 0.6349
0.4537 4.38 70 0.8058 0.7097 0.6281 0.6737 0.6772
0.398 5.0 80 0.5916 0.7581 0.7026 0.7035 0.7434
0.2933 5.62 90 0.8724 0.6935 0.6113 0.6623 0.6587
0.2834 6.25 100 0.6894 0.7419 0.7046 0.6973 0.7376
0.263 6.88 110 0.7285 0.7419 0.7244 0.7212 0.7556
0.181 7.5 120 0.6566 0.7419 0.7546 0.7617 0.7670
0.1736 8.12 130 1.0789 0.7903 0.7539 0.7372 0.7963
0.1837 8.75 140 0.8295 0.7419 0.7244 0.7212 0.7556
0.1696 9.38 150 1.1323 0.7581 0.7431 0.7313 0.7741
0.1758 10.0 160 0.8965 0.7258 0.7360 0.7516 0.7485
0.152 10.62 170 1.0633 0.7742 0.7607 0.7431 0.7926
0.1169 11.25 180 1.1007 0.7742 0.7607 0.7431 0.7926
0.1407 11.88 190 1.0659 0.7419 0.7487 0.7361 0.7704
0.0788 12.5 200 1.2677 0.7742 0.7607 0.7431 0.7926
0.2394 13.12 210 0.8819 0.7419 0.7645 0.7639 0.7744
0.114 13.75 220 1.1865 0.7742 0.7607 0.7431 0.7926
0.1454 14.38 230 1.3365 0.7742 0.7607 0.7431 0.7926
0.1023 15.0 240 1.2334 0.7419 0.7487 0.7361 0.7704
0.132 15.62 250 1.3341 0.7419 0.7487 0.7361 0.7704
0.1199 16.25 260 1.1251 0.7419 0.7487 0.7361 0.7704
0.1161 16.88 270 1.2843 0.7419 0.7487 0.7361 0.7704
0.0924 17.5 280 1.4196 0.7419 0.7487 0.7361 0.7704
0.1167 18.12 290 1.2224 0.7419 0.7487 0.7361 0.7704
0.1063 18.75 300 1.2558 0.7581 0.7549 0.7397 0.7815
0.1121 19.38 310 1.4312 0.7419 0.7487 0.7361 0.7704
0.1198 20.0 320 1.4862 0.7419 0.7487 0.7361 0.7704
0.1152 20.62 330 1.4057 0.7419 0.7487 0.7361 0.7704
0.0827 21.25 340 1.4738 0.7742 0.7607 0.7431 0.7926
0.1257 21.88 350 1.4706 0.7742 0.7607 0.7431 0.7926
0.1021 22.5 360 1.3139 0.7419 0.7487 0.7361 0.7704
0.1244 23.12 370 1.4685 0.7742 0.7607 0.7431 0.7926
0.1173 23.75 380 1.5196 0.7419 0.7487 0.7361 0.7704
0.0951 24.38 390 1.5036 0.7419 0.7487 0.7361 0.7704
0.1069 25.0 400 1.5056 0.7742 0.7607 0.7431 0.7926
0.1051 25.62 410 1.5297 0.7581 0.7549 0.7397 0.7815
0.1073 26.25 420 1.5805 0.7742 0.7607 0.7431 0.7926
0.0913 26.88 430 1.6029 0.7742 0.7607 0.7431 0.7926
0.0826 27.5 440 1.6013 0.7742 0.7607 0.7431 0.7926
0.0926 28.12 450 1.5705 0.7419 0.7487 0.7361 0.7704
0.0981 28.75 460 1.5954 0.7419 0.7487 0.7361 0.7704
0.0823 29.38 470 1.6280 0.7742 0.7607 0.7431 0.7926
0.1233 30.0 480 1.6143 0.7742 0.7607 0.7431 0.7926
0.098 30.62 490 1.5885 0.7419 0.7487 0.7361 0.7704
0.072 31.25 500 1.5868 0.7419 0.7487 0.7361 0.7704
0.1248 31.88 510 1.6264 0.7419 0.7487 0.7361 0.7704
0.1007 32.5 520 1.6531 0.7419 0.7487 0.7361 0.7704
0.0829 33.12 530 1.6675 0.7419 0.7487 0.7361 0.7704
0.0892 33.75 540 1.6814 0.7419 0.7487 0.7361 0.7704
0.1048 34.38 550 1.6926 0.7742 0.7607 0.7431 0.7926
0.1189 35.0 560 1.6922 0.7742 0.7607 0.7431 0.7926
0.0904 35.62 570 1.6460 0.7581 0.7549 0.7397 0.7815
0.088 36.25 580 1.6609 0.7742 0.7607 0.7431 0.7926
0.0902 36.88 590 1.7090 0.7742 0.7607 0.7431 0.7926
0.1151 37.5 600 1.7120 0.7419 0.7487 0.7361 0.7704
0.0665 38.12 610 1.7139 0.7419 0.7487 0.7361 0.7704
0.1057 38.75 620 1.7650 0.7419 0.7487 0.7361 0.7704
0.0926 39.38 630 1.7536 0.7419 0.7487 0.7361 0.7704
0.1225 40.0 640 1.6866 0.7581 0.7549 0.7397 0.7815
0.073 40.62 650 1.5809 0.7742 0.7607 0.7431 0.7926
0.1006 41.25 660 1.6110 0.7742 0.7607 0.7431 0.7926
0.096 41.88 670 1.6937 0.7742 0.7607 0.7431 0.7926
0.0824 42.5 680 1.7297 0.7419 0.7487 0.7361 0.7704
0.0803 43.12 690 1.7237 0.7419 0.7487 0.7361 0.7704
0.1029 43.75 700 1.7103 0.7419 0.7487 0.7361 0.7704
0.0923 44.38 710 1.7442 0.7742 0.7607 0.7431 0.7926
0.0939 45.0 720 1.7685 0.7742 0.7607 0.7431 0.7926
0.0894 45.62 730 1.7926 0.7742 0.7607 0.7431 0.7926
0.0954 46.25 740 1.7750 0.7581 0.7549 0.7397 0.7815
0.0947 46.88 750 1.7498 0.7742 0.7607 0.7431 0.7926
0.0621 47.5 760 1.7799 0.7742 0.7607 0.7431 0.7926
0.1132 48.12 770 1.7738 0.7419 0.7487 0.7361 0.7704
0.1054 48.75 780 1.7489 0.7419 0.7487 0.7361 0.7704
0.0764 49.38 790 1.7737 0.7419 0.7487 0.7361 0.7704
0.1055 50.0 800 1.7924 0.7419 0.7487 0.7361 0.7704
0.0754 50.62 810 1.7958 0.7419 0.7487 0.7361 0.7704
0.112 51.25 820 1.7691 0.7581 0.7549 0.7397 0.7815
0.0937 51.88 830 1.7532 0.7581 0.7451 0.7394 0.7688
0.0865 52.5 840 1.7491 0.7581 0.7451 0.7394 0.7688
0.0942 53.12 850 1.7697 0.7419 0.7487 0.7361 0.7704
0.0833 53.75 860 1.8022 0.7742 0.7607 0.7431 0.7926
0.0979 54.38 870 1.8034 0.7742 0.7607 0.7431 0.7926
0.0949 55.0 880 1.7938 0.7742 0.7607 0.7431 0.7926
0.0836 55.62 890 1.7926 0.7419 0.7487 0.7361 0.7704
0.0988 56.25 900 1.7862 0.7419 0.7487 0.7361 0.7704
0.0872 56.88 910 1.7967 0.7419 0.7487 0.7361 0.7704
0.0891 57.5 920 1.8087 0.7419 0.7487 0.7361 0.7704
0.0836 58.12 930 1.8217 0.7419 0.7487 0.7361 0.7704
0.085 58.75 940 1.8281 0.7419 0.7487 0.7361 0.7704
0.0917 59.38 950 1.8320 0.7581 0.7549 0.7397 0.7815
0.0931 60.0 960 1.8480 0.7581 0.7549 0.7397 0.7815
0.091 60.62 970 1.8438 0.7419 0.7487 0.7361 0.7704
0.0782 61.25 980 1.8527 0.7419 0.7487 0.7361 0.7704
0.1032 61.88 990 1.8643 0.7581 0.7549 0.7397 0.7815
0.1105 62.5 1000 1.8522 0.7419 0.7487 0.7361 0.7704
0.0732 63.12 1010 1.8443 0.7419 0.7487 0.7361 0.7704
0.0879 63.75 1020 1.8477 0.7419 0.7487 0.7361 0.7704
0.0991 64.38 1030 1.8533 0.7419 0.7487 0.7361 0.7704
0.0827 65.0 1040 1.8358 0.7419 0.7487 0.7361 0.7704
0.0942 65.62 1050 1.8442 0.7742 0.7607 0.7431 0.7926
0.0935 66.25 1060 1.8537 0.7419 0.7487 0.7361 0.7704
0.0818 66.88 1070 1.8601 0.7419 0.7487 0.7361 0.7704
0.0993 67.5 1080 1.8696 0.7742 0.7607 0.7431 0.7926
0.1181 68.12 1090 1.8594 0.7742 0.7607 0.7431 0.7926
0.1096 68.75 1100 1.8438 0.7742 0.7607 0.7431 0.7926
0.0545 69.38 1110 1.8344 0.7742 0.7607 0.7431 0.7926
0.0994 70.0 1120 1.8409 0.7581 0.7549 0.7397 0.7815
0.0905 70.62 1130 1.8529 0.7742 0.7607 0.7431 0.7926
0.1115 71.25 1140 1.8463 0.7419 0.7487 0.7361 0.7704
0.0775 71.88 1150 1.8440 0.7419 0.7487 0.7361 0.7704
0.1055 72.5 1160 1.8457 0.7419 0.7487 0.7361 0.7704
0.074 73.12 1170 1.8525 0.7419 0.7487 0.7361 0.7704
0.1023 73.75 1180 1.8586 0.7258 0.7333 0.7325 0.7466
0.1012 74.38 1190 1.8704 0.7419 0.7487 0.7361 0.7704
0.0814 75.0 1200 1.8778 0.7419 0.7487 0.7361 0.7704
0.0786 75.62 1210 1.8753 0.7419 0.7487 0.7361 0.7704
0.0852 76.25 1220 1.8770 0.7419 0.7487 0.7361 0.7704
0.112 76.88 1230 1.8797 0.7419 0.7487 0.7361 0.7704
0.0876 77.5 1240 1.8838 0.7419 0.7487 0.7361 0.7704
0.0779 78.12 1250 1.8866 0.7419 0.7487 0.7361 0.7704
0.0949 78.75 1260 1.8897 0.7419 0.7487 0.7361 0.7704
0.0946 79.38 1270 1.8907 0.7581 0.7549 0.7397 0.7815
0.0812 80.0 1280 1.8892 0.7742 0.7607 0.7431 0.7926
0.0844 80.62 1290 1.8903 0.7742 0.7607 0.7431 0.7926
0.0977 81.25 1300 1.8894 0.7742 0.7607 0.7431 0.7926
0.0787 81.88 1310 1.8935 0.7742 0.7607 0.7431 0.7926
0.1164 82.5 1320 1.8920 0.7419 0.7487 0.7361 0.7704
0.0752 83.12 1330 1.8886 0.7419 0.7487 0.7361 0.7704
0.0898 83.75 1340 1.8896 0.7419 0.7487 0.7361 0.7704
0.0983 84.38 1350 1.8847 0.7419 0.7487 0.7361 0.7704
0.095 85.0 1360 1.8840 0.7419 0.7487 0.7361 0.7704
0.0727 85.62 1370 1.8853 0.7419 0.7487 0.7361 0.7704
0.1182 86.25 1380 1.8857 0.7419 0.7487 0.7361 0.7704
0.0681 86.88 1390 1.8829 0.7419 0.7487 0.7361 0.7704
0.1079 87.5 1400 1.8880 0.7419 0.7487 0.7361 0.7704
0.0897 88.12 1410 1.8882 0.7419 0.7487 0.7361 0.7704
0.0675 88.75 1420 1.8889 0.7419 0.7487 0.7361 0.7704
0.1091 89.38 1430 1.8894 0.7419 0.7487 0.7361 0.7704
0.0831 90.0 1440 1.8917 0.7419 0.7487 0.7361 0.7704
0.0815 90.62 1450 1.8949 0.7419 0.7487 0.7361 0.7704
0.0903 91.25 1460 1.8959 0.7419 0.7487 0.7361 0.7704
0.0937 91.88 1470 1.9001 0.7419 0.7487 0.7361 0.7704
0.0797 92.5 1480 1.9006 0.7419 0.7487 0.7361 0.7704
0.1141 93.12 1490 1.9017 0.7419 0.7487 0.7361 0.7704
0.0696 93.75 1500 1.9018 0.7419 0.7487 0.7361 0.7704
0.0979 94.38 1510 1.9038 0.7419 0.7487 0.7361 0.7704
0.0846 95.0 1520 1.9055 0.7419 0.7487 0.7361 0.7704
0.078 95.62 1530 1.9060 0.7419 0.7487 0.7361 0.7704
0.0947 96.25 1540 1.9067 0.7419 0.7487 0.7361 0.7704
0.0823 96.88 1550 1.9081 0.7419 0.7487 0.7361 0.7704
0.1367 97.5 1560 1.9081 0.7419 0.7487 0.7361 0.7704
0.0597 98.12 1570 1.9085 0.7419 0.7487 0.7361 0.7704
0.1036 98.75 1580 1.9086 0.7419 0.7487 0.7361 0.7704
0.0826 99.38 1590 1.9089 0.7419 0.7487 0.7361 0.7704
0.0917 100.0 1600 1.9090 0.7419 0.7487 0.7361 0.7704

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Narkantak/Intent-classification-BERT-Large-Ashuv2

Finetuned
(103)
this model