mrm8488's picture
Update README.md
1875768
|
raw
history blame
1.55 kB
metadata
language:
  - en
tags:
  - table-to-text
  - tabular
datasets:
  - totto

BLOOM (0.56B) fine-tuned on Totto for Table-to-text

This model is a fine-tuned version of bigscience/bloom-560m on the Totto dataset.

Usage

from datasets import load_dataset
from transformers import BloomTokenizerFast, BloomForCausalLM

valid_dataset = load_dataset('totto', split='validation')

from preprocess import preprocess # This file is included in the repo

# Now we linearize the tables
valid_dataset = valid_dataset.map(preprocess) 

model_ckpt = "mrm8488/bloom-560m-finetuned-totto-table-to-text"

tokenizer = BloomTokenizerFast.from_pretrained(ckpt)
model = BloomForCausalLM.from_pretrained(ckpt).to("cuda")


def explain_hl_cells(text):
    inputs = tokenizer(text, return_tensors='pt')
    input_ids = inputs.input_ids.to("cuda")
    attention_mask = inputs.attention_mask.to("cuda")
    output = model.generate(input_ids, attention_mask=attention_mask, max_length=2048, eos_token_id=tokenizer.eos_token_id) # num_beams=3, temperature=1.9

    return tokenizer.decode(output[0], skip_special_tokens=False)

example = valid_dataset[1]

print(explain_hl_cells(example['linearized_table'])

Evaluation results

Metric Value
rouge1 0.56
rouge2 0.33
rougeL 0.48
rougeLsum 0.48

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1