layoutlmv3-finetuned-funsd
This model is a fine-tuned version of microsoft/layoutlmv3-base on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1164
- Precision: 0.9026
- Recall: 0.913
- F1: 0.9078
- Accuracy: 0.8330
The script for training can be found here: https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
- Downloads last month
- 450
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train Narsil/layoutlmv3-finetuned-funsd
Evaluation results
- Precision on nielsr/funsd-layoutlmv3self-reported0.903
- Recall on nielsr/funsd-layoutlmv3self-reported0.913
- F1 on nielsr/funsd-layoutlmv3self-reported0.908
- Accuracy on nielsr/funsd-layoutlmv3self-reported0.833