ner-model / README.md
Nathali99's picture
Training complete
200762f verified
|
raw
history blame
1.9 kB
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner-model
    results: []

ner-model

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1297
  • Precision: 0.8229
  • Recall: 0.8866
  • F1: 0.8535
  • Accuracy: 0.9667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1752 1.0 2489 0.1261 0.7649 0.8137 0.7885 0.9549
0.1076 2.0 4978 0.1184 0.7881 0.8592 0.8221 0.9611
0.074 3.0 7467 0.1137 0.7985 0.8802 0.8374 0.9634
0.0634 4.0 9956 0.1239 0.8125 0.8927 0.8507 0.9651
0.0387 5.0 12445 0.1297 0.8229 0.8866 0.8535 0.9667

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1