File size: 4,728 Bytes
18159a1
 
 
9a4c33e
6e985b4
 
9a4c33e
 
 
 
 
 
 
18159a1
 
9a4c33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18159a1
 
 
 
 
 
 
6e985b4
18159a1
6e985b4
 
18159a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- NbAiLab/NPSC
- robust-speech-event
- no
- nn-NO
datasets:
- NbAiLab/NPSC
language:
- nn-NO
model-index:
- name: wav2vec2-xlsr-1B-NPSC-NN
  results:
  - task:
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: NPSC
      type: NbAiLab/NPSC
      args: 16K_mp3_nynorsk
    metrics:
       - name: Test (Nynorsk) WER
         type: wer
         value: 0.13347099680871036
       - name: Test (Nynorsk) CER
         type: cer
         value: 0.04537322093454329
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-1B-NPSC-NN

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the NBAILAB/NPSC - 16K_MP3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4562
- Wer: 0.1531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.6894        | 1.08  | 500   | 1.2423          | 0.8619 |
| 0.7543        | 2.15  | 1000  | 0.5956          | 0.3817 |
| 0.5481        | 3.23  | 1500  | 0.5043          | 0.3246 |
| 0.4661        | 4.3   | 2000  | 0.4813          | 0.2793 |
| 0.3901        | 5.38  | 2500  | 0.4371          | 0.2592 |
| 0.3512        | 6.45  | 3000  | 0.4216          | 0.2458 |
| 0.3016        | 7.53  | 3500  | 0.3814          | 0.2257 |
| 0.278         | 8.6   | 4000  | 0.4151          | 0.2145 |
| 0.2435        | 9.68  | 4500  | 0.4816          | 0.2130 |
| 0.2122        | 10.75 | 5000  | 0.4489          | 0.2137 |
| 0.1949        | 11.83 | 5500  | 0.3978          | 0.2063 |
| 0.1929        | 12.9  | 6000  | 0.3823          | 0.2026 |
| 0.1757        | 13.98 | 6500  | 0.3409          | 0.1965 |
| 0.1771        | 15.05 | 7000  | 0.3844          | 0.1936 |
| 0.1452        | 16.13 | 7500  | 0.3749          | 0.1900 |
| 0.1341        | 17.2  | 8000  | 0.4407          | 0.2026 |
| 0.13          | 18.28 | 8500  | 0.4253          | 0.1883 |
| 0.1183        | 19.35 | 9000  | 0.4311          | 0.1880 |
| 0.118         | 20.43 | 9500  | 0.4431          | 0.1882 |
| 0.1123        | 21.51 | 10000 | 0.4753          | 0.1820 |
| 0.1037        | 22.58 | 10500 | 0.4087          | 0.1834 |
| 0.1066        | 23.66 | 11000 | 0.4151          | 0.1845 |
| 0.0977        | 24.73 | 11500 | 0.4367          | 0.1783 |
| 0.0968        | 25.81 | 12000 | 0.4237          | 0.1756 |
| 0.0835        | 26.88 | 12500 | 0.4729          | 0.1781 |
| 0.0919        | 27.96 | 13000 | 0.4153          | 0.1701 |
| 0.0677        | 29.03 | 13500 | 0.4317          | 0.1693 |
| 0.0726        | 30.11 | 14000 | 0.4380          | 0.1736 |
| 0.066         | 31.18 | 14500 | 0.4384          | 0.1681 |
| 0.0713        | 32.26 | 15000 | 0.4215          | 0.1629 |
| 0.0605        | 33.33 | 15500 | 0.4574          | 0.1714 |
| 0.0632        | 34.41 | 16000 | 0.4343          | 0.1642 |
| 0.0567        | 35.48 | 16500 | 0.4231          | 0.1601 |
| 0.0556        | 36.56 | 17000 | 0.4404          | 0.1667 |
| 0.0426        | 37.63 | 17500 | 0.4459          | 0.1625 |
| 0.0445        | 38.71 | 18000 | 0.4484          | 0.1629 |
| 0.0463        | 39.78 | 18500 | 0.4508          | 0.1596 |
| 0.0448        | 40.86 | 19000 | 0.4395          | 0.1605 |
| 0.0434        | 41.94 | 19500 | 0.4490          | 0.1607 |
| 0.0347        | 43.01 | 20000 | 0.4772          | 0.1582 |
| 0.0332        | 44.09 | 20500 | 0.4729          | 0.1582 |
| 0.037         | 45.16 | 21000 | 0.4559          | 0.1573 |
| 0.0328        | 46.24 | 21500 | 0.4664          | 0.1560 |
| 0.0366        | 47.31 | 22000 | 0.4543          | 0.1543 |
| 0.0377        | 48.39 | 22500 | 0.4507          | 0.1560 |
| 0.0331        | 49.46 | 23000 | 0.4567          | 0.1533 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0