Edit model card

layoutlmv3-funsd-finetuned

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6391
  • Precision: 0.8943
  • Recall: 0.9121
  • F1: 0.9031
  • Accuracy: 0.8540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.3333 100 0.6387 0.7375 0.8306 0.7813 0.7786
No log 2.6667 200 0.5473 0.8270 0.8718 0.8489 0.8184
No log 4.0 300 0.5020 0.8514 0.8877 0.8692 0.8278
No log 5.3333 400 0.5326 0.8610 0.9016 0.8809 0.8293
0.5379 6.6667 500 0.5600 0.8656 0.8987 0.8818 0.8451
0.5379 8.0 600 0.5903 0.8778 0.8917 0.8847 0.8357
0.5379 9.3333 700 0.6079 0.8859 0.9026 0.8942 0.8470
0.5379 10.6667 800 0.6449 0.8978 0.9076 0.9027 0.8458
0.5379 12.0 900 0.6410 0.8934 0.9116 0.9024 0.8582
0.1248 13.3333 1000 0.6391 0.8943 0.9121 0.9031 0.8540

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Negus/layoutlmv3-funsd-finetuned

Finetuned
(213)
this model