|
--- |
|
datasets: |
|
- gozfarb/ShareGPT_Vicuna_unfiltered |
|
- Aeala/ShareGPT_Vicuna_unfiltered |
|
tags: |
|
- uncensored |
|
--- |
|
# Convert tools |
|
https://github.com/practicaldreamer/vicuna_to_alpaca |
|
|
|
# Training tool |
|
https://github.com/oobabooga/text-generation-webui |
|
|
|
ATM I'm using 2023.05.04v0 of the dataset and training full context. |
|
|
|
# Notes: |
|
So I will only be training 1 epoch, as full context 30b takes so long to train. |
|
This 1 epoch will take me 8 days lol but luckily these LoRA feels fully functinal at epoch 1 as shown on my 13b one. |
|
Also I will be uploading checkpoints almost everyday. I could train another epoch if there's enough want for it. |
|
|
|
Update: Since I will not be training over 1 epoch @Aeala is training for the full 3 https://huggingface.co/Aeala/VicUnlocked-alpaca-half-30b-LoRA but it's half ctx if you care about that. Also @Aeala's just about done. |
|
|
|
Update: Training Finished at Epoch 1, These 8 days sure felt long. I only have one A6000 lads there's only so much I can do. Also RIP gozfarb IDK what happened to him. |
|
|
|
# How to test? |
|
1. Download LLaMA-30B-HF if you have not: https://huggingface.co/Neko-Institute-of-Science/LLaMA-30B-HF |
|
2. Make a folder called VicUnLocked-30b-LoRA in the loras folder. |
|
3. Download adapter_config.json and adapter_model.bin into VicUnLocked-30b-LoRA. |
|
4. Load ooba: ```python server.py --listen --model LLaMA-30B-HF --load-in-8bit --chat --lora VicUnLocked-30b-LoRA``` |
|
5. Select instruct and chose Vicuna-v1.1 template. |
|
|
|
|
|
# Training Log |
|
https://wandb.ai/neko-science/VicUnLocked/runs/vx8yzwi7 |