File size: 1,707 Bytes
fca5410 d3172ff fca5410 d3172ff fca5410 d3172ff fca5410 d3172ff fca5410 d3172ff fca5410 d3172ff fca5410 d3172ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch import torchvision.transforms as transforms from PIL import Image import numpy as np from sklearn.metrics.pairwise import cosine_similarity from torchvision.models import resnet50 from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader # Load a pre-trained ResNet-50 model model = resnet50(pretrained=True) model.eval() # Define a function to preprocess images def preprocess_image(image_path): transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image = Image.open(image_path) image = transform(image).unsqueeze(0) # Add a batch dimension return image # Load your ideal subset of images ideal_image_paths = ["/content/trunck.jpg", "t4.jpg"] # Replace with your ideal image file paths ideal_embeddings = [] for image_path in ideal_image_paths: image = preprocess_image(image_path) with torch.no_grad(): embedding = model(image).squeeze().numpy() ideal_embeddings.append(embedding) # Load a set of candidate images candidate_image_paths = ["/content/trunck2.jpg", "t3.jpg", "car.jpg",] # Replace with your candidate image file paths candidate_embeddings = [] for image_path in candidate_image_paths: image = preprocess_image(image_path) with torch.no_grad(): embedding = model(image).squeeze().numpy() candidate_embeddings.append(embedding) # Calculate similarities between ideal and candidate images using cosine similarity similarities = cosine_similarity(ideal_embeddings, candidate_embeddings) # Print the similarity matrix print(similarities) |