videomae-base-finetuned-sign-subset
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.3672
- Accuracy: 0.1905
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 270
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.04 | 11 | 2.4220 | 0.0870 |
2.3491 | 1.04 | 22 | 2.6315 | 0.0 |
2.3491 | 2.04 | 33 | 2.6680 | 0.0435 |
2.2285 | 3.04 | 44 | 2.8487 | 0.1304 |
2.2285 | 4.04 | 55 | 3.0361 | 0.0870 |
1.996 | 5.04 | 66 | 3.0258 | 0.1304 |
1.996 | 6.04 | 77 | 3.2125 | 0.1304 |
1.6956 | 7.04 | 88 | 3.2063 | 0.1304 |
1.6956 | 8.04 | 99 | 3.1919 | 0.1304 |
1.5088 | 9.04 | 110 | 3.1940 | 0.1304 |
1.3777 | 10.04 | 121 | 3.3180 | 0.1739 |
1.3777 | 11.04 | 132 | 3.3112 | 0.1304 |
1.1509 | 12.04 | 143 | 3.3400 | 0.1304 |
1.1509 | 13.04 | 154 | 3.2550 | 0.1739 |
0.9036 | 14.04 | 165 | 3.3682 | 0.1304 |
0.9036 | 15.04 | 176 | 3.3775 | 0.1304 |
0.8303 | 16.04 | 187 | 3.4701 | 0.1304 |
0.8303 | 17.04 | 198 | 3.4340 | 0.1739 |
0.6683 | 18.04 | 209 | 3.4843 | 0.1304 |
0.5126 | 19.04 | 220 | 3.3552 | 0.2174 |
0.5126 | 20.04 | 231 | 3.3702 | 0.2609 |
0.3728 | 21.04 | 242 | 3.3871 | 0.2609 |
0.3728 | 22.04 | 253 | 3.3565 | 0.2609 |
0.3291 | 23.04 | 264 | 3.3861 | 0.3043 |
0.3291 | 24.02 | 270 | 3.3876 | 0.3043 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.