Nessrine9's picture
Finetuned model on SNLI
810c498 verified
metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:100000
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: Face off with a ref mid-hockey game in an arena.
    sentences:
      - Nobody is playing
      - >-
        A mustached man in a patterned shirt watches a boat painted blue and
        orange.
      - Two adults makes calls on there cell phones during there lunch breaks.
  - source_sentence: >-
      A group of people, one holding a yellow and blue umbrella, are standing at
      the top of some stairs.
    sentences:
      - One person wields an umbrella.
      - A girl is on the beach.
      - A man is on his couch.
  - source_sentence: >-
      A man waiting for the results of the machine after doing an experiment in
      his laboratory.
    sentences:
      - There is a man playing an instrument while running
      - A man in a lab waits to get more information about his experiment.
      - The graffiti artists admire their work.
  - source_sentence: People in a tent shelter near the bottom of stairs.
    sentences:
      - A boy has fallen asleep during dinner.
      - Three men address a crowd.
      - People are in a makeshift shelter at the foot of a staircase.
  - source_sentence: A female researcher looking through a microscope.
    sentences:
      - A man misses the rope and falls
      - A small girl is playing video games
      - A woman is researching with a microscope.
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: snli dev
          type: snli-dev
        metrics:
          - type: pearson_cosine
            value: 0.48994508338253345
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4778683474663533
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.46917600703738915
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.47754796729416876
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.46924620767742137
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.4778683474663533
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.48994508631435785
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4778683472855999
            name: Spearman Dot
          - type: pearson_max
            value: 0.48994508631435785
            name: Pearson Max
          - type: spearman_max
            value: 0.4778683474663533
            name: Spearman Max

SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L12-v2
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned2-snli-MiniLM-L12-v2")
# Run inference
sentences = [
    'A female researcher looking through a microscope.',
    'A woman is researching with a microscope.',
    'A small girl is playing video games',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4899
spearman_cosine 0.4779
pearson_manhattan 0.4692
spearman_manhattan 0.4775
pearson_euclidean 0.4692
spearman_euclidean 0.4779
pearson_dot 0.4899
spearman_dot 0.4779
pearson_max 0.4899
spearman_max 0.4779

Training Details

Training Dataset

Unnamed Dataset

  • Size: 100,000 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 7 tokens
    • mean: 16.32 tokens
    • max: 86 tokens
    • min: 4 tokens
    • mean: 10.46 tokens
    • max: 32 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    A man wearing jeans and a t-shirt plays guitar for a smiling woman and child as they sit on a staircase near red and orange balloons. A man is in jail. 1.0
    A boy wearing blue short standing on the traffic signal pole. The boy is carrying his school books. 0.5
    Several people on a busy street or perhaps at a fair. They are walkng. 0.5
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss snli-dev_spearman_max
0.08 500 0.1832 0.3114
0.16 1000 0.1489 0.3518
0.24 1500 0.1468 0.3697
0.32 2000 0.1411 0.3723
0.4 2500 0.14 0.4062
0.48 3000 0.1366 0.3923
0.56 3500 0.1379 0.4143
0.64 4000 0.1357 0.3928
0.72 4500 0.1331 0.4067
0.8 5000 0.1338 0.4293
0.88 5500 0.1294 0.4183
0.96 6000 0.1305 0.4402
1.0 6250 - 0.4454
1.04 6500 0.1303 0.4408
1.12 7000 0.1275 0.4416
1.2 7500 0.1285 0.4287
1.28 8000 0.125 0.4404
1.3600 8500 0.1253 0.4408
1.44 9000 0.1246 0.4293
1.52 9500 0.126 0.4535
1.6 10000 0.1257 0.4455
1.6800 10500 0.1264 0.4520
1.76 11000 0.1248 0.4526
1.8400 11500 0.1208 0.4631
1.92 12000 0.1236 0.4635
2.0 12500 0.1239 0.4573
2.08 13000 0.1209 0.4569
2.16 13500 0.1194 0.4642
2.24 14000 0.1206 0.4539
2.32 14500 0.117 0.4633
2.4 15000 0.1171 0.4657
2.48 15500 0.1181 0.4633
2.56 16000 0.1197 0.4552
2.64 16500 0.1182 0.4670
2.7200 17000 0.1155 0.4684
2.8 17500 0.1171 0.4640
2.88 18000 0.1139 0.4715
2.96 18500 0.1164 0.4769
3.0 18750 - 0.4709
3.04 19000 0.1151 0.4704
3.12 19500 0.1144 0.4759
3.2 20000 0.1121 0.4795
3.2800 20500 0.1104 0.4697
3.36 21000 0.1127 0.4763
3.44 21500 0.1115 0.4742
3.52 22000 0.1126 0.4697
3.6 22500 0.1123 0.4735
3.68 23000 0.1132 0.4750
3.76 23500 0.1127 0.4743
3.84 24000 0.1086 0.4752
3.92 24500 0.1107 0.4781
4.0 25000 0.1114 0.4779

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}