SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1.0 |
|
0.0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9641 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Netta1994/setfit_unique_600")
# Run inference
preds = model("The author clearly cites it as a Reddit thread. In a scholastic paper, you would be expected to have a bit more original content, but you wouldn't 'get in trouble' ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 79.6779 | 401 |
Label | Training Sample Count |
---|---|
0.0 | 424 |
1.0 | 172 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.2731 | - |
0.0336 | 50 | 0.2275 | - |
0.0671 | 100 | 0.1003 | - |
0.1007 | 150 | 0.0085 | - |
0.1342 | 200 | 0.0021 | - |
0.1678 | 250 | 0.0007 | - |
0.2013 | 300 | 0.0013 | - |
0.2349 | 350 | 0.0001 | - |
0.2685 | 400 | 0.0003 | - |
0.3020 | 450 | 0.0003 | - |
0.3356 | 500 | 0.0001 | - |
0.3691 | 550 | 0.0001 | - |
0.4027 | 600 | 0.0001 | - |
0.4362 | 650 | 0.0001 | - |
0.4698 | 700 | 0.0001 | - |
0.5034 | 750 | 0.0 | - |
0.5369 | 800 | 0.0 | - |
0.5705 | 850 | 0.0001 | - |
0.6040 | 900 | 0.0 | - |
0.6376 | 950 | 0.0 | - |
0.6711 | 1000 | 0.0001 | - |
0.7047 | 1050 | 0.0001 | - |
0.7383 | 1100 | 0.0 | - |
0.7718 | 1150 | 0.0 | - |
0.8054 | 1200 | 0.0001 | - |
0.8389 | 1250 | 0.0 | - |
0.8725 | 1300 | 0.0 | - |
0.9060 | 1350 | 0.0 | - |
0.9396 | 1400 | 0.0 | - |
0.9732 | 1450 | 0.0 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.2.0+cu121
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.