NeuraFusionAI's picture
End of training
2ed876d verified
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
datasets:
  - flores
metrics:
  - bleu
model-index:
  - name: meta-translation-chinese-english-model
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: flores
          type: flores
          config: zho_Hans-eng_Latn
          split: dev
          args: zho_Hans-eng_Latn
        metrics:
          - name: Bleu
            type: bleu
            value: 0.4467

meta-translation-chinese-english-model

This model is a fine-tuned version of t5-small on the flores dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8438
  • Bleu: 0.4467
  • Gen Len: 18.815
  • Exact Match: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len Exact Match
No log 1.0 50 3.9743 0.1872 15.755 0.0
No log 2.0 100 3.9226 0.196 17.525 0.0
No log 3.0 150 3.8931 0.3008 18.075 0.0
No log 4.0 200 3.8743 0.4408 18.83 0.0
No log 5.0 250 3.8628 0.3987 18.83 0.0
No log 6.0 300 3.8546 0.4146 18.905 0.0
No log 7.0 350 3.8498 0.4069 18.87 0.0
No log 8.0 400 3.8464 0.4022 18.85 0.0
No log 9.0 450 3.8445 0.4432 18.815 0.0
4.0794 10.0 500 3.8438 0.4467 18.815 0.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1