Senzu-7B-v0.1 / README.md
NeuralNovel's picture
Update README.md
3177fcc verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - practical-dreamer/RPGPT_PublicDomain-alpaca
  - shuyuej/metamath_gsm8k
  - NeuralNovel/Neural-DPO
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: out
    results: []

image/jpeg

NeuralNovel/Senzu-7B-v0.1

Embracing a quiet storm ..

Model Details

This model is a full parameter fine-tuned version of mistralai/Mistral-7B-v0.1

Trained on the Neural-DPO, metamath_gsm8k and RPGPT_PublicDomain-alpaca dataset.

This model excels at character roleplay, also with the ability of responding accurately to a wide variety of complex questions.

Buy Me a Coffee at ko-fi.com Join Our Discord!

base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets: 
  - path: practical-dreamer/RPGPT_PublicDomain-alpaca
    type: alpaca
    format: "[INST] {instruction} [/INST]"
    no_input_format: "[INST] {instruction} [/INST]"

datasets: 
  - path: shuyuej/metamath_gsm8k
    type: jeopardy
    format: "[INST] {instruction} [/INST]"
    no_input_format: "[INST] {instruction} [/INST]"

datasets:
  - path: NeuralNovel/Neural-DPO
    type:
      system_prompt: ""
      field_system: system
      field_instruction: chosen
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 0
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.2061 0.01 1 0.3139
0.0 0.25 32 0.0000
0.0 0.5 64 0.0010
0.0 0.76 96 0.0000

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 56.40
AI2 Reasoning Challenge (25-Shot) 58.19
HellaSwag (10-Shot) 81.98
MMLU (5-Shot) 63.20
TruthfulQA (0-shot) 40.20
Winogrande (5-shot) 76.64
GSM8k (5-shot) 18.20