NeverLearn's picture
End of training
f078471 verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
datasets:
  - maccrobat_biomedical_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: deberta-v3-base-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: maccrobat_biomedical_ner
          type: maccrobat_biomedical_ner
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.7843711467324291
          - name: Recall
            type: recall
            value: 0.7816003686069728
          - name: F1
            type: f1
            value: 0.7829833064081853
          - name: Accuracy
            type: accuracy
            value: 0.8584199081903842

deberta-v3-base-finetuned-ner

This model is a fine-tuned version of microsoft/deberta-v3-base on the maccrobat_biomedical_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9704
  • Precision: 0.7844
  • Recall: 0.7816
  • F1: 0.7830
  • Accuracy: 0.8584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.555607052152088e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 20 0.9499 0.7670 0.7685 0.7678 0.8477
No log 2.0 40 0.9042 0.7721 0.7629 0.7675 0.8484
No log 3.0 60 0.9360 0.7674 0.7573 0.7623 0.8475
No log 4.0 80 0.8984 0.7630 0.7589 0.7609 0.8442
No log 5.0 100 0.8159 0.7695 0.7701 0.7698 0.8495
No log 6.0 120 0.8086 0.7557 0.7730 0.7643 0.8454
No log 7.0 140 0.7937 0.7766 0.7712 0.7739 0.8509
No log 8.0 160 0.8430 0.7703 0.7707 0.7705 0.8513
No log 9.0 180 0.8711 0.7715 0.7710 0.7712 0.8517
No log 10.0 200 0.8649 0.7687 0.7626 0.7656 0.8485
No log 11.0 220 0.8686 0.7817 0.7635 0.7725 0.8516
No log 12.0 240 0.8644 0.7765 0.7802 0.7784 0.8546
No log 13.0 260 0.8680 0.7771 0.7796 0.7783 0.8550
No log 14.0 280 0.8845 0.7728 0.7748 0.7738 0.8528
No log 15.0 300 0.9084 0.7774 0.7713 0.7743 0.8537
No log 16.0 320 0.9396 0.7782 0.7659 0.7720 0.8509
No log 17.0 340 0.9338 0.7776 0.7781 0.7778 0.8547
No log 18.0 360 0.9205 0.7749 0.7770 0.7759 0.8537
No log 19.0 380 0.9426 0.7781 0.7724 0.7752 0.8523
No log 20.0 400 0.9403 0.7769 0.7827 0.7798 0.8550
No log 21.0 420 0.9393 0.7795 0.7713 0.7754 0.8536
No log 22.0 440 0.9618 0.7771 0.7790 0.7780 0.8547
No log 23.0 460 0.9420 0.7814 0.7836 0.7825 0.8582
No log 24.0 480 0.9455 0.7842 0.7808 0.7825 0.8583
0.0412 25.0 500 0.9599 0.7821 0.7801 0.7811 0.8571
0.0412 26.0 520 0.9518 0.7815 0.7833 0.7824 0.8578
0.0412 27.0 540 0.9570 0.7800 0.7818 0.7809 0.8567
0.0412 28.0 560 0.9634 0.7819 0.7801 0.7810 0.8573
0.0412 29.0 580 0.9685 0.7818 0.7831 0.7825 0.8579
0.0412 30.0 600 0.9704 0.7844 0.7816 0.7830 0.8584

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2