NeverLearn's picture
End of training
a5f9288 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - maccrobat_biomedical_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: maccrobat_biomedical_ner
          type: maccrobat_biomedical_ner
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0
          - name: Recall
            type: recall
            value: 0
          - name: F1
            type: f1
            value: 0
          - name: Accuracy
            type: accuracy
            value: 0.41848218895198763

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the maccrobat_biomedical_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4960
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.4185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 10 2.9692 0.0 0.0 0.0 0.4185
No log 2.0 20 2.5900 0.0 0.0 0.0 0.4185
No log 3.0 30 2.4960 0.0 0.0 0.0 0.4185

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2