update README.md
Browse files- README.md +87 -197
- logo.png +0 -0
- modelstructure.jpg +0 -0
README.md
CHANGED
@@ -1,199 +1,89 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
##
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: Qwen/Qwen2-7B-Instruct
|
4 |
+
model-index:
|
5 |
+
- name: Dolphin
|
6 |
+
results: []
|
7 |
+
tags:
|
8 |
+
- RAG
|
9 |
+
- on-device language model
|
10 |
+
- Retrieval Augmented Generation
|
11 |
+
inference: false
|
12 |
+
space: false
|
13 |
+
spaces: false
|
14 |
+
language:
|
15 |
+
- en
|
16 |
---
|
17 |
+
# Dolphin: Long Context as a New Modality for Energy-Efficient On-Device Language Models
|
18 |
+
|
19 |
+
<p align="center">
|
20 |
+
- <a href="https://www.nexaai.com/models" target="_blank">Nexa Model Hub</a>
|
21 |
+
- <a href="https://arxiv.org/abs/2404.01744" target="_blank">ArXiv</a>
|
22 |
+
</p>
|
23 |
+
|
24 |
+
<p align="center" width="100%">
|
25 |
+
<a><img src="logo.png" alt="nexa-octopus" style="width: 30%; min-width: 300px; display: block; margin: auto;"></a>
|
26 |
+
</p>
|
27 |
+
|
28 |
+
## Overview
|
29 |
+
Dolphin is a novel approach to accelerate language model inference by treating long context as a new modality, similar to image, audio, and video modalities in vision-language models. This innovative method incorporates a language encoder model to encode context information into embeddings, applying multimodal model concepts to enhance the efficiency of language model inference。 Below are model highlights:
|
30 |
+
- 🧠 Context as a distinct modality
|
31 |
+
- 🗜️ Language encoder for context compression
|
32 |
+
- 🔗 Multimodal techniques applied to language processing
|
33 |
+
- ⚡ Optimized for energy efficiency and on-device use
|
34 |
+
- 📜 Specialized for long context understanding
|
35 |
+
|
36 |
+
## Model Architecture
|
37 |
+
Dolphin employs a decoder-decoder framework with two main components:
|
38 |
+
1. A smaller decoder (0.5B parameters) for transforming information from extensive contexts
|
39 |
+
2. A larger decoder (7B parameters) for comprehending and generating responses to current queries
|
40 |
+
3. The architecture also includes a projector to align embeddings between the text encoder and the main decoder.
|
41 |
+
|
42 |
+
![Model Architecture](modelstructure.jpg)
|
43 |
+
|
44 |
+
## Running the Model
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer
|
48 |
+
from configuration_dolphin import DolphinForCausalLM
|
49 |
+
import time
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained('nexa-collaboration/dolphin_instruct_1M_0805', trust_remote_code=True)
|
52 |
+
model = DolphinForCausalLM.from_pretrained('nexa-collaboration/dolphin_instruct_1M_0805', trust_remote_code=True)
|
53 |
+
|
54 |
+
def inference(input_text):
|
55 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
56 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
57 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
58 |
+
|
59 |
+
input_text = "Take a selfie for me with front camera"
|
60 |
+
nexa_query = f"Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: {input_text} \n\nResponse:"
|
61 |
+
|
62 |
+
start_time = time.time()
|
63 |
+
result = inference(nexa_query)
|
64 |
+
print("Dolphin model result:\n", result)
|
65 |
+
print("Latency:", time.time() - start_time, "s")
|
66 |
+
```
|
67 |
+
|
68 |
+
## Training Process
|
69 |
+
Dolphin's training involves three stages:
|
70 |
+
1. Restoration Training: Reconstructing original context from compressed embeddings
|
71 |
+
2. Continual Training: Generating context continuations from partial compressed contexts
|
72 |
+
3. Instruction Fine-tuning: Generating responses to queries given compressed contexts
|
73 |
+
|
74 |
+
This multi-stage approach progressively enhances the model's ability to handle long contexts and generate appropriate responses.
|
75 |
+
|
76 |
+
## Citation
|
77 |
+
If you use Dolphin in your research, please cite our paper:
|
78 |
+
|
79 |
+
```bibtex
|
80 |
+
@article{dolphin2024,
|
81 |
+
title={Dolphin: Long Context as a New Modality for Energy-Efficient On-Device Language Models},
|
82 |
+
author={[Author Names]},
|
83 |
+
journal={arXiv preprint arXiv:[paper_id]},
|
84 |
+
year={2024}
|
85 |
+
}
|
86 |
+
```
|
87 |
+
|
88 |
+
## Contact
|
89 |
+
For questions or feedback, please [contact us]([email protected])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logo.png
ADDED
modelstructure.jpg
ADDED