Llama3-20240602
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.4100
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 960
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.1356 | 40 | 1.3411 |
No log | 0.2712 | 80 | 1.3121 |
1.335 | 0.4068 | 120 | 1.2957 |
1.335 | 0.5424 | 160 | 1.2854 |
1.258 | 0.6780 | 200 | 1.2772 |
1.258 | 0.8136 | 240 | 1.2706 |
1.258 | 0.9492 | 280 | 1.2642 |
1.2379 | 1.0847 | 320 | 1.2746 |
1.2379 | 1.2203 | 360 | 1.2682 |
1.1301 | 1.3559 | 400 | 1.2697 |
1.1301 | 1.4915 | 440 | 1.2713 |
1.1301 | 1.6271 | 480 | 1.2671 |
1.1256 | 1.7627 | 520 | 1.2633 |
1.1256 | 1.8983 | 560 | 1.2620 |
1.0987 | 2.0339 | 600 | 1.2888 |
1.0987 | 2.1695 | 640 | 1.3127 |
1.0987 | 2.3051 | 680 | 1.3148 |
0.9445 | 2.4407 | 720 | 1.3093 |
0.9445 | 2.5763 | 760 | 1.3086 |
0.9553 | 2.7119 | 800 | 1.3095 |
0.9553 | 2.8475 | 840 | 1.3029 |
0.9553 | 2.9831 | 880 | 1.3066 |
0.9298 | 3.1186 | 920 | 1.4147 |
0.9298 | 3.2542 | 960 | 1.4100 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Nhut/Llama3-20240602
Base model
meta-llama/Meta-Llama-3-8B-Instruct