NiharGupte's picture
Model save
10a0643 verified
|
raw
history blame
2.28 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-student_kaggle
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4889937106918239

resnet-50-finetuned-student_kaggle

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 34897389209777069883392.0000
  • Accuracy: 0.4890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
33718936798882659565568.0000 0.9362 11 34897389209777069883392.0000 0.4890
32438469749948979085312.0000 1.9574 23 34897389209777069883392.0000 0.4890
33363246103192638849024.0000 2.9787 35 34897389209777069883392.0000 0.4890
32954207567756639862784.0000 4.0 47 34897389209777069883392.0000 0.4890
32794156842759294550016.0000 4.6809 55 34897389209777069883392.0000 0.4890

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1