NiharGupte's picture
Model save
407fae4 verified
metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-student_two_classes
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.85

resnet-50-finetuned-student_two_classes

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4531
  • Accuracy: 0.85

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5955 1.0 13 0.4665 0.85
0.5303 2.0 26 0.4790 0.85
0.6127 3.0 39 0.4787 0.85
0.5025 4.0 52 0.4547 0.85
0.471 5.0 65 0.4621 0.85
0.4673 6.0 78 0.4775 0.86
0.4492 7.0 91 0.4648 0.86
0.4144 8.0 104 0.4733 0.85
0.4963 9.0 117 0.4575 0.85
0.4149 10.0 130 0.4691 0.85
0.4588 11.0 143 0.4596 0.84
0.3995 12.0 156 0.4754 0.85
0.359 13.0 169 0.4616 0.85
0.4246 14.0 182 0.4552 0.85
0.4001 15.0 195 0.4839 0.85
0.3919 16.0 208 0.4708 0.85
0.4137 17.0 221 0.4416 0.85
0.3912 18.0 234 0.4507 0.85
0.4322 19.0 247 0.4237 0.85
0.4043 20.0 260 0.4531 0.85

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1