metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-footulcer
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-footulcer
This model is a fine-tuned version of microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0013
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.425 | 1.0 | 65 | 0.2769 | 0.8793 |
0.3182 | 2.0 | 130 | 0.0547 | 0.9828 |
0.2053 | 3.0 | 195 | 0.0286 | 0.9914 |
0.2892 | 4.0 | 260 | 0.0167 | 0.9914 |
0.1774 | 5.0 | 325 | 0.0013 | 1.0 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2