Nitral
Adding Evaluation Results (#2)
ddb5e23 verified
metadata
license: other
library_name: transformers
tags:
  - mergekit
  - merge
  - alpaca
  - mistral
base_model:
  - SanjiWatsuki/Kunoichi-DPO-v2-7B
  - Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
model-index:
  - name: Kunocchini-7b-128k-test
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.98
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.62
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 61.27
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 59.35
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.9
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 52.31
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
          name: Open LLM Leaderboard

Thanks to @Epiculous for the dope model/ help with llm backends and support overall.

Id like to also thank @kalomaze for the dope sampler additions to ST.

@SanjiWatsuki Thank you very much for the help, and the model!

ST users can find the TextGenPreset in the folder labeled so.

image/jpeg

Quants: Thank You @s3nh! https://huggingface.co/s3nh/Kunocchini-7b-128k-test-GGUF and @bartowski https://huggingface.co/bartowski/Kunocchini-7b-128k-test-exl2 Thanks To @Lewdiculus for the Imatrix gguf quants: https://huggingface.co/Lewdiculous/Kunocchini-7b-128k-test-GGUF-Imatrix

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: SanjiWatsuki/Kunoichi-DPO-v2-7B
        layer_range: [0, 32]
      - model: Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
        layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.24
AI2 Reasoning Challenge (25-Shot) 66.98
HellaSwag (10-Shot) 85.62
MMLU (5-Shot) 61.27
TruthfulQA (0-shot) 59.35
Winogrande (5-shot) 77.90
GSM8k (5-shot) 52.31