metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Output_LayoutLMv3
results: []
Output_LayoutLMv3
This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2507
- Precision: 0.8319
- Recall: 0.8319
- F1: 0.8319
- Accuracy: 0.9771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.27 | 100 | 0.1116 | 0.7705 | 0.8319 | 0.8 | 0.9676 |
No log | 4.55 | 200 | 0.1130 | 0.8319 | 0.8540 | 0.8428 | 0.9762 |
No log | 6.82 | 300 | 0.1707 | 0.7931 | 0.8142 | 0.8035 | 0.9686 |
No log | 9.09 | 400 | 0.1998 | 0.7521 | 0.7920 | 0.7716 | 0.9648 |
0.0744 | 11.36 | 500 | 0.1633 | 0.8210 | 0.8319 | 0.8264 | 0.9752 |
0.0744 | 13.64 | 600 | 0.1784 | 0.8182 | 0.8363 | 0.8271 | 0.9752 |
0.0744 | 15.91 | 700 | 0.1909 | 0.8095 | 0.8274 | 0.8184 | 0.9724 |
0.0744 | 18.18 | 800 | 0.1962 | 0.7974 | 0.8186 | 0.8079 | 0.9724 |
0.0744 | 20.45 | 900 | 0.1723 | 0.8412 | 0.8673 | 0.8540 | 0.9781 |
0.0081 | 22.73 | 1000 | 0.2109 | 0.8210 | 0.8319 | 0.8264 | 0.9733 |
0.0081 | 25.0 | 1100 | 0.2194 | 0.8087 | 0.8230 | 0.8158 | 0.9743 |
0.0081 | 27.27 | 1200 | 0.2076 | 0.8465 | 0.8540 | 0.8502 | 0.9771 |
0.0081 | 29.55 | 1300 | 0.1883 | 0.8688 | 0.8496 | 0.8591 | 0.9819 |
0.0081 | 31.82 | 1400 | 0.2042 | 0.8170 | 0.8496 | 0.8330 | 0.9771 |
0.0034 | 34.09 | 1500 | 0.2144 | 0.8261 | 0.8407 | 0.8333 | 0.9771 |
0.0034 | 36.36 | 1600 | 0.1953 | 0.8205 | 0.8496 | 0.8348 | 0.9771 |
0.0034 | 38.64 | 1700 | 0.2259 | 0.8267 | 0.8230 | 0.8248 | 0.9762 |
0.0034 | 40.91 | 1800 | 0.2553 | 0.7974 | 0.8186 | 0.8079 | 0.9714 |
0.0034 | 43.18 | 1900 | 0.2238 | 0.8377 | 0.8451 | 0.8414 | 0.9781 |
0.0006 | 45.45 | 2000 | 0.2245 | 0.8451 | 0.8451 | 0.8451 | 0.9790 |
0.0006 | 47.73 | 2100 | 0.2389 | 0.8326 | 0.8142 | 0.8233 | 0.9762 |
0.0006 | 50.0 | 2200 | 0.2500 | 0.8251 | 0.8142 | 0.8196 | 0.9752 |
0.0006 | 52.27 | 2300 | 0.2537 | 0.8304 | 0.8451 | 0.8377 | 0.9762 |
0.0006 | 54.55 | 2400 | 0.2410 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
0.0001 | 56.82 | 2500 | 0.2484 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
0.0001 | 59.09 | 2600 | 0.2517 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
0.0001 | 61.36 | 2700 | 0.2524 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
0.0001 | 63.64 | 2800 | 0.2531 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
0.0001 | 65.91 | 2900 | 0.2528 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
0.0 | 68.18 | 3000 | 0.2507 | 0.8319 | 0.8319 | 0.8319 | 0.9771 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2