metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: NourhanAbosaeed/Coursera_Reviews_Sentiment_Analysis_DistillBERT
results: []
language:
- en
library_name: transformers
NourhanAbosaeed/Coursera_Reviews_Sentiment_Analysis_DistillBERT
This model is a fine-tuned version of distilbert-base-uncased on an a dataset from Cousera courses reviews, It is publicly available on Kaggle since 2017.
After data preprocessing and model training, It achieves the following results on the evaluation set:
- Train Loss: 0.4934
- Validation Loss: 0.6018
- Train Accuracy: 0.7498
- Epoch: 2
Considering the imbalanced nature of the data, metrics such as recall, precision, and F1 score were employed for evaluation:-
The model achieves these results on the test set:
precision recall f1-score support
0 0.37 0.59 0.46 1928
1 0.71 0.74 0.72 1022
2 0.91 0.79 0.85 8712
accuracy 0.75 11662
macro avg 0.67 0.71 0.68 11662
weighted avg 0.81 0.75 0.77 11662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
After cleaning the data, It becomes 93291 training size, 11661 for validation and 11662 for test sets.
There are 3 lables positive, negative and netural.
The data have imbalanced nature so I have used class weights during training.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17490, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.6870 | 0.6382 | 0.7505 | 0 |
0.5836 | 0.5976 | 0.7583 | 1 |
0.4934 | 0.6018 | 0.7498 | 2 |
Framework versions
- Transformers 4.35.1
- TensorFlow 2.14.0
- Datasets 2.14.7
- Tokenizers 0.14.1