See axolotl config
axolotl version: 0.4.0
base_model: NovoCode/Novocode7b-v2
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Intel/orca_dpo_pairs
type:
system_prompt: ""
field_system: system
field_instruction: question
field_output: chosen
field_output: rejected
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
out
This model is a fine-tuned version of NovoCode/Novocode7b-v2 on the Intel/orca_dpo_pairs dataset. It achieves the following results on the evaluation set:
- Loss: 0.6792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7565 | 0.01 | 1 | 0.8244 |
0.4845 | 0.26 | 24 | 0.4685 |
0.4594 | 0.51 | 48 | 0.4435 |
0.4399 | 0.77 | 72 | 0.4284 |
0.3115 | 1.01 | 96 | 0.4221 |
0.2008 | 1.26 | 120 | 0.4614 |
0.2212 | 1.52 | 144 | 0.4552 |
0.2101 | 1.78 | 168 | 0.4516 |
0.119 | 2.02 | 192 | 0.4547 |
0.0925 | 2.27 | 216 | 0.5502 |
0.096 | 2.53 | 240 | 0.5751 |
0.0967 | 2.78 | 264 | 0.5774 |
0.0537 | 3.02 | 288 | 0.5765 |
0.0576 | 3.28 | 312 | 0.6687 |
0.0526 | 3.54 | 336 | 0.6786 |
0.0492 | 3.79 | 360 | 0.6792 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for NovoCode/Novocode7b-v3
Base model
NovoCode/Novocode7b-v2