Open-Assistant Falcon 7B SFT MIX Model
This model is a fine-tuning of TII's Falcon 7B LLM. It was trained on a mixture of OASST top-2 threads (exported on June 2, 2023), Dolly-15k and synthetic instruction datasets (see dataset configuration below).
Model Details
- Finetuned from: tiiuae/falcon-7b
- Model type: Causal decoder-only transformer language model
- Language: English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- Weights & Biases: Training log (Checkpoint: 2000 steps, ~2.9 epochs)
- Demo: Continuations for 250 random prompts
- License: Apache 2.0
- Contact: Open-Assistant Discord
Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
<|prompter|>
and <|assistant|>
. Each turn ends with a <|endoftext|>
token.
Input prompt example:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
The input ends with the <|assistant|>
token to signal that the model should
start generating the assistant reply.
Sample Code
from transformers import AutoTokenizer
import transformers
import torch
model = "OpenAssistant/falcon-7b-sft-mix-2000"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
input_text="<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>"
sequences = pipeline(
input_text,
max_length=500,
do_sample=True,
return_full_text=False,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Configuration Details
Model:
falcon-7b:
dtype: bf16
log_dir: "falcon_log_7b"
learning_rate: 1e-5
model_name: "tiiuae/falcon-7b"
deepspeed_config: configs/zero_config.json
output_dir: falcon
weight_decay: 0.0
max_length: 2048
warmup_steps: 20
gradient_checkpointing: true
gradient_accumulation_steps: 4
per_device_train_batch_size: 4
per_device_eval_batch_size: 8
eval_steps: 100
save_steps: 500
save_strategy: steps
num_train_epochs: 8
save_total_limit: 4
residual_dropout: 0.2
residual_dropout_lima: true
Dataset:
sft9-stage2:
# oasst_export: 100.00% (29899)
# vicuna: 50.00% (16963)
# code_alpaca: 50.00% (9510)
# oa_wiki_qa_bart_10000row: 100.00% (9434)
# grade_school_math_instructions: 100.00% (8351)
# dolly15k: 100.00% (14250)
use_custom_sampler: true
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
input_file_path: 2023-06-02_oasst_all_labels.jsonl.gz
val_split: 0.05
top_k: 2
- vicuna:
fraction: 0.5
val_split: 0.025
max_val_set: 250
- code_alpaca:
fraction: 0.5
val_split: 0.05
max_val_set: 250
- oa_wiki_qa_bart_10000row:
val_split: 0.05
max_val_set: 250
- grade_school_math_instructions:
val_split: 0.05
- dolly15k:
val_split: 0.05
max_val_set: 300
- Downloads last month
- 37
Inference API (serverless) does not yet support model repos that contain custom code.