File size: 3,689 Bytes
578e911
 
d0945e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578e911
d0945e8
 
d962c30
e94cc49
6952413
3bd5bef
 
d0945e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd5bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: apache-2.0
language:
- en
- de
- es
- fr
tags:
- sft
pipeline_tag: text-generation
widget:
- text: >-
    <|prompter|>What is a meme, and what's the history behind this
    word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: >-
    <|prompter|>Write a story about future of AI
    development<|endoftext|><|assistant|>
datasets:
- OpenAssistant/oasst1
---
# Open-Assistant Falcon 7B SFT MIX Model

- base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
- [sampling report](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-06-05_OpenAssistant_falcon-7b-sft-mix-2000_sampling_noprefix2.json)
- wandb: https://wandb.ai/open-assistant/public-sft/runs/tlevhltw
- checkpoint: 2000 steps (~2.9 epochs)

## Prompting

Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.

Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should 
start generating the assistant reply.


## Sample Code

```python
from transformers import AutoTokenizer
import transformers
import torch

model = "OpenAssistant/falcon-7b-sft-mix-2000"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)

input_text="<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>"

sequences = pipeline(
    input_text,
    max_length=500,
    do_sample=True,
    return_full_text=False,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")
```


## Configuration Details

Model:
```
falcon-7b:
  dtype: bf16
  log_dir: "falcon_log_7b"
  learning_rate: 1e-5
  model_name: "tiiuae/falcon-7b"
  deepspeed_config: configs/zero_config.json
  output_dir: falcon
  weight_decay: 0.0
  max_length: 2048
  warmup_steps: 20
  gradient_checkpointing: true
  gradient_accumulation_steps: 4
  per_device_train_batch_size: 4
  per_device_eval_batch_size: 8
  eval_steps: 100
  save_steps: 500
  save_strategy: steps
  num_train_epochs: 8
  save_total_limit: 4
  residual_dropout: 0.2
  residual_dropout_lima: true
```

Dataset:
```
sft9-stage2:
  # oasst_export: 100.00% (29899)
  # vicuna: 50.00% (16963)
  # code_alpaca: 50.00% (9510)
  # oa_wiki_qa_bart_10000row: 100.00% (9434)
  # grade_school_math_instructions: 100.00% (8351)
  # dolly15k: 100.00% (14250)

  use_custom_sampler: true
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
        input_file_path: 2023-06-02_oasst_all_labels.jsonl.gz
        val_split: 0.05
        top_k: 2
    - vicuna:
        fraction: 0.5
        val_split: 0.025
        max_val_set: 250
    - code_alpaca:
        fraction: 0.5
        val_split: 0.05
        max_val_set: 250
    - oa_wiki_qa_bart_10000row:
        val_split: 0.05
        max_val_set: 250
    - grade_school_math_instructions:
        val_split: 0.05
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
```