File size: 7,283 Bytes
8e927bb 44e4329 bb6b287 8e927bb 253108a 44e4329 4f22248 8a67969 4f22248 44e4329 17f90c4 44e4329 8a67969 17f90c4 8a67969 0b827a6 44e4329 79b55e2 44e4329 6d492b5 44e4329 d76eb45 37cb9c9 d76eb45 44e4329 5956092 253108a 44e4329 bc5ea9e 44e4329 17f90c4 44e4329 bb6b287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
pipeline_tag: image-feature-extraction
---
# Model Card for InternVL-14B-224px
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2yzk5wUY-obL6H4rKiHlU.webp" alt="Image Description" width="300" height="300">
</p>
[\[๐ Blog\]](https://internvl.github.io/blog/) [\[๐ InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[๐ InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) [\[๐จ๏ธ Chat Demo\]](https://internvl.opengvlab.com/)
[\[๐ค HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[๐ Quick Start\]](#model-usage) [\[๐ Community-hosted API\]](https://rapidapi.com/adushar1320/api/internvl-chat) [\[๐ ไธญๆ่งฃ่ฏป\]](https://zhuanlan.zhihu.com/p/675877376)
| Model | Date | Download | Note |
| ----------------------- | ---------- | ---------------------------------------------------------------------- | -------------------------------- |
| InternViT-6B-448px-V1-5 | 2024.04.20 | ๐ค [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | support dynamic resolution, super strong OCR (๐ฅnew) |
| InternViT-6B-448px-V1-2 | 2024.02.11 | ๐ค [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) | 448 resolution |
| InternViT-6B-448px-V1-0 | 2024.01.30 | ๐ค [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) | 448 resolution |
| InternViT-6B-224px | 2023.12.22 | ๐ค [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-224px) | vision foundation model |
| InternVL-14B-224px | 2023.12.22 | ๐ค [HF link](https://huggingface.co/OpenGVLab/InternVL-14B-224px) | vision-language foundation model |
## Model Details
- **Model Type:** vision-language foundation model
- **Support Tasks:** zero-shot image/video classification, image-text/video retrieval, image captioning
- **Model Stats:**
- Params: 14B
- Image size: 224 x 224
- **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
## Zero-Shot Performance
See this [document](https://github.com/OpenGVLab/InternVL/tree/main/clip_benchmark#-evaluation-zero-shot-image-classification) for more details about the zero-shot evaluation.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/KfsrXioPU77T48sRb60oL.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/q5UkfrEix6w3mnn_1w4ja.png)
## Model Usage
**Note: the prefix `'summarize:'` and `tokenizer.pad_token_id = 0` are necessary. Their absence will lead to abnormal results.**
```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer
model = AutoModel.from_pretrained(
'OpenGVLab/InternVL-14B-224px',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).cuda().eval()
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL-14B-224px')
tokenizer = AutoTokenizer.from_pretrained(
'OpenGVLab/InternVL-14B-224px', use_fast=False, add_eos_token=True)
tokenizer.pad_token_id = 0 # set pad_token_id to 0
images = [
Image.open('./examples/image1.jpg').convert('RGB'),
Image.open('./examples/image2.jpg').convert('RGB'),
Image.open('./examples/image3.jpg').convert('RGB')
]
prefix = 'summarize:'
texts = [
prefix + 'a photo of a red panda', # English
prefix + 'ไธๅผ ็็ซ็็
ง็', # Chinese
prefix + 'ไบๅนใฎ็ซใฎๅ็' # Japanese
]
pixel_values = image_processor(images=images, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
input_ids = tokenizer(texts, return_tensors='pt', max_length=80,
truncation=True, padding='max_length').input_ids.cuda()
# InternVL-C
logits_per_image, logits_per_text = model(
image=pixel_values, text=input_ids, mode='InternVL-C')
probs = logits_per_image.softmax(dim=-1)
# tensor([[9.9609e-01, 5.2185e-03, 6.0070e-08],
# [2.2949e-02, 9.7656e-01, 5.9903e-06],
# [3.2932e-06, 7.4863e-05, 1.0000e+00]], device='cuda:0',
# dtype=torch.bfloat16, grad_fn=<SoftmaxBackward0>)
# InternVL-G
logits_per_image, logits_per_text = model(
image=pixel_values, text=input_ids, mode='InternVL-G')
probs = logits_per_image.softmax(dim=-1)
# tensor([[9.9609e-01, 3.1738e-03, 3.6322e-08],
# [8.6060e-03, 9.9219e-01, 2.8759e-06],
# [1.7583e-06, 3.1233e-05, 1.0000e+00]], device='cuda:0',
# dtype=torch.bfloat16, grad_fn=<SoftmaxBackward0>)
# please set add_eos_token to False for generation
tokenizer.add_eos_token = False
image = Image.open('./examples/image1.jpg').convert('RGB')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
tokenized = tokenizer("English caption:", return_tensors='pt')
pred = model.generate(
pixel_values=pixel_values,
input_ids=tokenized.input_ids.cuda(),
attention_mask=tokenized.attention_mask.cuda(),
num_beams=5,
min_new_tokens=8,
)
caption = tokenizer.decode(pred[0].cpu(), skip_special_tokens=True).strip()
# English caption: a red panda sitting on top of a wooden platform
```
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
```
## Acknowledgement
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work! |