InternVL-14B-FlickrCN-FT-364px
What is InternVL?
InternVL scales up the ViT to 6B parameters and aligns it with LLM.
It is the largest open-source vision/vision-language foundation model (14B) to date, achieving 32 state-of-the-art performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
Model Details
- Model Type: fine-tuned retrieval model
- Support Tasks: image-text retrieval
- Model Stats:
- Params: 14B
- Image size: 364 x 364
- Fine-tune Dataset: FlickrCN
Setting
Performance
See this document for more details about the evaluation.
Model Usage
Note: the prefix 'summarize:'
and tokenizer.pad_token_id = 0
are necessary. Their absence will lead to abnormal results.
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer
model = AutoModel.from_pretrained(
'OpenGVLab/InternVL-14B-FlickrCN-FT-364px',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).cuda().eval()
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL-14B-FlickrCN-FT-364px')
tokenizer = AutoTokenizer.from_pretrained(
'OpenGVLab/InternVL-14B-FlickrCN-FT-364px', use_fast=False, add_eos_token=True)
tokenizer.pad_token_id = 0 # set pad_token_id to 0
images = [
Image.open('./examples/image1.jpg').convert('RGB'),
Image.open('./examples/image2.jpg').convert('RGB'),
Image.open('./examples/image3.jpg').convert('RGB')
]
prefix = 'summarize:'
texts = [
prefix + 'a photo of a red panda', # English
prefix + '一张熊猫的照片', # Chinese
prefix + '二匹の猫の写真' # Japanese
]
pixel_values = image_processor(images=images, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
input_ids = tokenizer(texts, return_tensors='pt', max_length=80,
truncation=True, padding='max_length').input_ids.cuda()
# InternVL-C
logits_per_image, logits_per_text = model(
image=pixel_values, text=input_ids, mode='InternVL-C')
probs = logits_per_image.softmax(dim=-1)
# InternVL-G
logits_per_image, logits_per_text = model(
image=pixel_values, text=input_ids, mode='InternVL-G')
probs = logits_per_image.softmax(dim=-1)
Citation
If you find this project useful in your research, please consider citing:
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
Acknowledgement
InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!
- Downloads last month
- 5
Model tree for OpenGVLab/InternVL-14B-FlickrCN-FT-364px
Base model
OpenGVLab/InternVL-14B-224px