File size: 11,616 Bytes
75c67a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import io
import logging
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
from typing import List, Optional, Tuple, Union
from torch.cuda.amp import autocast as autocast
from .modeling_base import BaseMLLM
from .modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean, interpolate_pos_embed_internvideo2_new
from .modeling_qformer import build_qformer
logger = logging.getLogger(__name__)
IMG_TOKEN = "[<IMG_PLH>]"
VID_TOKEN = "[<VID_PLH>]"
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_BOS_TOKEN = '<s>'
DEFAULT_EOS_TOKEN = '</s>'
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMAGE_TOKEN = "[IMAGETOKEN]"
DEFAULT_VIDEO_TOKEN = "[VIDEOTOKEN]"
DEFAULT_IMG_PLACEHOLDER = "[<IMG_PLH>]"
DEFAULT_VID_PLACEHOLDER = "[<VID_PLH>]"
class InternVideo2_VideoChat2(BaseMLLM):
def __init__(
self,
config
):
super().__init__(config=config)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
instruction = None,
video_idx = None,
image_idx = None,
):
if self.use_vision_regression_loss:
text_embeds, visual, visual_idx = self.pad_text_embeds(input_ids=input_ids, image=image,video=video, return_visual=True, video_idx=video_idx, image_idx=image_idx, instruction = instruction)
else:
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False, video_idx=video_idx, image_idx=image_idx, instruction = instruction)
outputs = self.lm(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
labels=labels,
output_hidden_states=True,
return_dict=True,
)
return outputs
def pad_text_embeds(
self,
input_ids: torch.LongTensor = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
image_idx = None,
video_idx = None,
return_visual: bool = False,
instruction = None,
):
# text_embeds
text_embeds = self.lm.get_input_embeddings()(input_ids.long()).detach()
visual = None
visual_idx = None
if image is not None:
B, T, C, H, W = image.shape
image = image.permute(0, 2, 1, 3, 4)
prompt_image_embeds = self.encode_vision(image, instruction=instruction)
visual = prompt_image_embeds
prompt_image_embeds = self.project_up(prompt_image_embeds)
prompt_image_embeds = prompt_image_embeds.view(-1, prompt_image_embeds.shape[-1])
visual_idx = image_idx
text_embeds[image_idx == 1] = text_embeds[image_idx == 1] * 0 + prompt_image_embeds.to(text_embeds.device)
elif video is not None:
if len(video.shape) == 5:
B, T, C, H, W = video.shape
N = 1
else:
B, N, T, C, H, W = video.shape
video = video.reshape(B*N, T, C, H, W).permute(0, 2, 1, 3, 4)
prompt_video_embeds = self.encode_vision(video, instruction=instruction)
visual = prompt_video_embeds
prompt_video_embeds = self.project_up(prompt_video_embeds)
prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1])
visual_idx = video_idx
text_embeds[video_idx == 1] = text_embeds[video_idx == 1] * 0 + prompt_video_embeds.to(text_embeds.device).to(text_embeds.dtype)
else:
logger.warn(f"don't get visual input, input_ids: {input_ids}")
if return_visual:
return text_embeds, visual, visual_idx
return text_embeds
def encode_vision(
self,
image,
instruction
):
device = image.device
B = image.shape[0]
T = image.shape[2]
use_image = True if T == 1 else False
image_embeds = self.vision_encoder(image, use_image=use_image)
C = image_embeds.shape[-1]
image_embeds = image_embeds.reshape(B, -1, C)
image_embeds = self.vision_layernorm(image_embeds).to(device) # [B, T*L, C]
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
if self.extra_num_query_token > 0:
query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
if instruction is not None:
text_Qformer = self.qformer_tokenizer(
instruction,
padding='longest',
truncation=True,
max_length=512,
return_tensors="pt",
).to(image_embeds.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_embeds.device)
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
query_output = self.qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return query_output.last_hidden_state[:, :query_tokens.size(1), :]
def generate_caption(
self,
input_ids,
attention_mask,
image_idx = None,
video_idx = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
num_beams=1,
max_new_tokens=200,
do_sample=True,
top_p=0.9,
top_k=None,
temperature=1.0,
length_penalty=1,
repetition_penalty=1.0,
instruction=None
):
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx,instruction=instruction)
outputs = self.lm.generate(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
min_length=1,
top_p=top_p,
top_k=top_k,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
)
return outputs
def build_input_ids(
self,
tokenizer,
conversation,
max_length,
add_special_tokens,
truncation,
image = None,
video = None,
padding = "longest",
return_tensors = "pt",
image_placeholder: str = DEFAULT_IMG_PLACEHOLDER,
video_placeholder: str = DEFAULT_VID_PLACEHOLDER,
):
input_ids = []
indexs = []
attention_mask = []
start, total_len = 0, 0
while True:
index1 = conversation.find(image_placeholder, start)
index2 = conversation.find(video_placeholder, start)
if index1 == -1 and index2 == -1:
index = -1
elif index1 == -1:
index = index2
elif index2 == -1:
index = index1
else:
index = min(index1, index2)
assert index != -1
if index == -1:
inputs = tokenizer(conversation[start:], max_length=max_length-total_len, truncation=truncation, padding=padding, return_tensors=return_tensors)
else:
inputs = tokenizer(conversation[start:index], max_length=max_length, truncation=truncation, padding='longest', return_tensors=return_tensors)
input_ids += inputs.input_ids
attention_mask += inputs.attention_mask
total_len += inputs.input_ids[0].shape[0]
indexs += torch.zeros_like(inputs.input_ids)
if index != -1:
input_ids += [torch.zeros(96).long()]
attention_mask += [torch.ones(96).long()]
indexs += [torch.ones(96)]
if index == -1:
return {
'input_ids': torch.cat(input_ids),
'attention_mask': torch.cat(attention_mask),
'index': torch.cat(indexs).to(torch.bool),
}
start = index + len(DEFAULT_IMG_PLACEHOLDER)
def chat(
self,
tokenizer,
msg,
user_prompt,
media_type,
media_tensor,
instruction=None,
chat_history =[],
return_history =False,
generation_config={}
):
ilen = media_tensor.shape[1]
conversation = ""
if instruction:
cur_instruction = "<|im_start|>system\n" + instruction+ "<|im_end|>\n"
conversation += cur_instruction
conversation += (
"<|im_start|>user\n"
)
if media_type == 'image':
conversation +=( "<img>" + IMG_TOKEN + "</img>")*ilen
else:
conversation += ("<vid>" + VID_TOKEN + "</vid>")*ilen
conversation += (
msg.rstrip() + "<|im_end|>\n"
)
for q,a in chat_history:
conversation += ("<|im_start|>user\n" + q + "<|im_end|>\n")
conversation += ("<|im_start|>assistant\n" + a + "<|im_end|>\n" + '</s>')
conversation += ("<|im_start|>user\n" + user_prompt + "<|im_end|>\n")
conversation += ("")
total_len = 0
indexs = []
tokenized = self.build_input_ids(
tokenizer,
conversation,
max_length=248,
add_special_tokens=True,
truncation=False,
padding=False,
return_tensors='pt'
)
if media_type == 'image':
generation_output = self.generate_caption(
tokenized['input_ids'].unsqueeze(0).to(self.device),
tokenized['attention_mask'].unsqueeze(0).to(self.device),
image_idx = tokenized['index'].unsqueeze(0),
image = media_tensor,
instruction=[instruction]* ilen if instruction else None,
**generation_config)
else:
generation_output = self.generate_caption(
tokenized['input_ids'].unsqueeze(0).to(self.device),
tokenized['attention_mask'].unsqueeze(0).to(self.device),
video_idx = tokenized['index'].unsqueeze(0),
video = media_tensor,
instruction=[instruction]* ilen if instruction else None,
**generation_config)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
if return_history:
chat_history.append((user_prompt,response))
return response, chat_history
return response |