Video-Text-to-Text
Safetensors
custom_code
File size: 43,421 Bytes
75c67a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
import math
import logging
import torch
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from torch import nn

import torch.utils.checkpoint as checkpoint
from functools import partial
from einops import rearrange

    
logger = logging.getLogger(__name__)

# try:
#     from .flash_attention_class import FlashAttention
# except:
#     logger.warn(f'flash_attn is not installed, you can install it by `pip install flash_attn` ')
# try:
#     from flash_attn.modules.mlp import FusedMLP
# except:
#     logger.warn(f'FusedMLP of flash_attn is not installed!!!')

# try:
#     from flash_attn.ops.rms_norm import DropoutAddRMSNorm
# except:
#     logger.warn(f'DropoutAddRMSNorm of flash_attn is not installed!!!')

import numpy as np
import torch
import logging

logger = logging.getLogger(__name__)

# --------------------------------------------------------
# 3D sine-cosine position embedding
# References:
# MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
# --------------------------------------------------------
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    t_size: int of the temporal size
    return:
    pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    assert embed_dim % 4 == 0
    embed_dim_spatial = embed_dim // 4 * 3
    embed_dim_temporal = embed_dim // 4

    # spatial
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
        embed_dim_spatial, grid
    )

    # temporal
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
        embed_dim_temporal, grid_t
    )

    # concate: [T, H, W] order
    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(
        pos_embed_temporal, grid_size**2, axis=1
    )  # [T, H*W, D // 4]
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(
        pos_embed_spatial, t_size, axis=0
    )  # [T, H*W, D // 4 * 3]

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
    pos_embed = pos_embed.reshape([-1, embed_dim])  # [T*H*W, D]

    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
    """
    t_size: int of the temporal size
    return:
    pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[0]
    )  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[1]
    )  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8):
    # interpolate position embedding
    for pos_name in ['pos_embed', 'clip_pos_embed']:
        if pos_name in checkpoint_model:
            pos_embed_checkpoint = checkpoint_model[pos_name]
            embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
            num_patches = model.patch_embed.num_patches # 
            num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

            # we use 8 frames for pretraining
            # new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
            new_t_size = model.num_frames // model.tubelet_size
            # height (== width) for the checkpoint position embedding
            orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
            # height (== width) for the new position embedding
            new_size = int((num_patches // (new_t_size))** 0.5)
            
            # class_token and dist_token are kept unchanged
            if orig_t_size != new_t_size:
                logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
                pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
                pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
                pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
                pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model[pos_name] = new_pos_embed
                pos_embed_checkpoint = new_pos_embed

            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                # B, L, C -> BT, H, W, C -> BT, C, H, W
                pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
                # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
                pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model[pos_name] = new_pos_embed
    
    
    if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model:
        raise NotImplementedError

def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8):
    pos_names = []
    for k in checkpoint_model.keys():
        if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k: # NOTE 暂时不插值img_pos,高分辨率时可能需要再加
            pos_names.append(k)
    
    logger.info(f"pos names list for interpolating: {pos_names}")

    assert len(pos_names) > 0, checkpoint_model.keys()

    if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys():
        raise NotImplementedError
    
    # interpolate position embedding
    for pos_name in pos_names:

        pos_embed_checkpoint = checkpoint_model[pos_name]
        embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
        num_patches = model.patch_embed.num_patches # 
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

        # we use 8 frames for pretraining
        # new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
        new_t_size = model.num_frames // model.tubelet_size
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int((num_patches // (new_t_size))** 0.5)
        
        # class_token and dist_token are kept unchanged
        if orig_t_size != new_t_size:
            logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            pos_embed_checkpoint = new_pos_embed

        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
    
    

def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
    if pos_name in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model[pos_name]
        embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
        num_patches = model.patch_embed.num_patches # 
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

        # we use 4 frames for pretraining
        new_t_size = model.T
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int((num_patches // (new_t_size))** 0.5)
        
        # class_token and dist_token are kept unchanged
        if orig_t_size != new_t_size:
            print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            pos_embed_checkpoint = new_pos_embed

        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
    else:
        raise NotImplementedError



class CrossAttention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, out_dim=None):
        super().__init__()
        if out_dim is None:
            out_dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        assert all_head_dim == dim
        
        self.q = nn.Linear(dim, all_head_dim, bias=False)
        self.k = nn.Linear(dim, all_head_dim, bias=False)
        self.v = nn.Linear(dim, all_head_dim, bias=False)
        
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None
        
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, out_dim)
        self.proj_drop = nn.Dropout(proj_drop)
    
    def forward(self, x, k=None, v=None):
        B, N, C = x.shape
        N_k = k.shape[1]
        N_v = v.shape[1]
        
        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = self.k_bias
            v_bias = self.v_bias
        
        q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
        q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)  # (B, N_head, N_q, dim)
        
        k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
        k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
        
        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
        v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
        
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B, N_head, N_q, N_k)
        
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        
        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        
        return x


class AttentiveBlock(nn.Module):
    
    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
        super().__init__()
        
        self.norm1_q = norm_layer(dim)
        self.norm1_k = norm_layer(dim)
        self.norm1_v = norm_layer(dim)
        self.cross_attn = CrossAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
            proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
        
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
    
    def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
        x_q = self.norm1_q(x_q + pos_q)
        x_k = self.norm1_k(x_kv + pos_k)
        x_v = self.norm1_v(x_kv)
        x = self.cross_attn(x_q, k=x_k, v=x_v)
        
        return x


class AttentionPoolingBlock(AttentiveBlock):
    
    def forward(self, x):
        x_q = x.mean(1, keepdim=True)
        x_kv, pos_q, pos_k = x, 0, 0
        x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
        x = x.squeeze(1)
        return x


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps
    
    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
                 causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        
        self.use_flash_attn = use_flash_attn
        if use_flash_attn:
            self.causal = causal
            self.inner_attn = FlashAttention(attention_dropout=attn_drop)
        
        self.qk_normalization = qk_normalization
        self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.use_fused_rmsnorm = use_fused_rmsnorm
    
    def _naive_attn(self, x):
        B, N, C = x.shape
        # print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
        
        if self.qk_normalization:
            B_, H_, N_, D_ = q.shape
            q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
            k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
        
        attn = ((q * self.scale) @ k.transpose(-2, -1))
        # attn = attn - attn.max(-1)[0].unsqueeze(-1)  # in case of overflow for fp16
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        # print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        # print(f"\033[31m这{x.device}是{self.proj.weight.device} {self.proj.bias.device}\033[0m")
        # print(f"\033[31m类型{x.dtype}是{self.proj.weight.dtype} {self.proj.bias.dtype}\033[0m")
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
    
    def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
        
        qkv = self.qkv(x)
        qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
        
        if self.qk_normalization:
            q, k, v = qkv.unbind(2)
            if self.use_fused_rmsnorm:
                q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
                k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
            else:
                q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
                k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
            qkv = torch.stack([q, k, v], dim=2)
        
        context, _ = self.inner_attn(
            qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
        )
        outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
        outs = self.proj_drop(outs)
        return outs
    
    def forward(self, x):
        x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
        return x


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
                 bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Block(nn.Module):
    
    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
            fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
            use_fused_rmsnorm=False):
        super().__init__()
        
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
                              use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
                              qk_normalization=qk_normalization,
                              use_fused_rmsnorm=use_fused_rmsnorm)
        self.ls1 = nn.Parameter(init_values * torch.ones(dim))
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        if use_fused_mlp:
            self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
        else:
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.ls2 = nn.Parameter(init_values * torch.ones(dim))
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.with_cp = with_cp
        self.use_fused_rmsnorm = use_fused_rmsnorm
    
    def forward(self, x, residual=None):
        
        def _inner_forward(x, residual=None):
            if self.use_fused_rmsnorm:
                x, residual = self.norm1(x, residual)
                x = self.drop_path1(self.ls1 * self.attn(x) )
                x, residual = self.norm2(x, residual)
                x = self.drop_path2(self.ls2 * self.mlp(x) )
                return x, residual
            else:
                assert residual is None
                x = x + self.drop_path1(self.ls1 * self.attn(self.norm1(x)))
                x = x + self.drop_path2(self.ls2 * self.mlp(self.norm2(x)))
                return x
        
        if self.with_cp:
            # print(f"\033[31m use_checkpoint [0m")
            return checkpoint.checkpoint(_inner_forward, x, residual)
        else:
            return _inner_forward(x, residual=residual)


class PatchEmbed(nn.Module):
    """ 3D Image to Patch Embedding
    """
    
    def __init__(
            self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, 
            num_frames=8, tubelet_size=1, norm_layer=None
        ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.tubelet_size = tubelet_size
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (
            num_frames // tubelet_size, 
            img_size[0] // patch_size[0], 
            img_size[1] // patch_size[1]
        ) # (T, H, W)
        self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
        self.num_img_patches = self.grid_size[1] * self.grid_size[2]

        self.proj = nn.Conv3d(
            in_channels=in_chans, out_channels=embed_dim, 
            kernel_size=(tubelet_size, patch_size[0], patch_size[1]), 
            stride=(tubelet_size, patch_size[0], patch_size[1])
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
    
    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(3).permute(0, 2, 3, 1)  # B x C x T x HW => B x T x HW x C
        x = self.norm(x)
        return x

class PretrainVisionTransformer_clean(nn.Module):
    def __init__(
            self,
            in_chans: int = 3,
            patch_size: int = 14,
            img_size: int = 224,
            qkv_bias: bool = False, # follow internvl_clip to set False
            drop_path_rate: float = 0.25, # may need ablation
            embed_dim: int = 1408,
            num_heads: int = 16,
            mlp_ratio: float = 48/11,
            init_values: float = 1e-5, # may need ablation
            qk_normalization: bool = True,
            depth: int = 40,
            use_flash_attn: bool = True,
            use_fused_rmsnorm: bool = True,
            use_fused_mlp: bool = True,
            fused_mlp_heuristic: int = 1,
            attn_pool_num_heads: int = 16,
            clip_embed_dim: int = 768,
            layerscale_no_force_fp32: bool = False, # whether True for training?
            num_frames: int = 8,
            tubelet_size: int = 1,
            sep_pos_embed: bool = False,
            sep_image_video_pos_embed: bool = False,
            use_checkpoint: bool = False,
            checkpoint_num: int = 0,
            # for unmasked teacher
            x_vis_return_idx=-1,
            x_vis_only=False
        ):
        super().__init__()
        
        self.num_frames = num_frames
        self.tubelet_size = tubelet_size
        assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent'
        
        self.use_flash_attn = use_flash_attn
        self.embed_dim = embed_dim

        logger.info(f"Origin depth: {depth}")
        depth = depth + x_vis_return_idx + 1
        logger.info(f"New depth: {depth}")
        self.depth = depth

        self.x_vis_only = x_vis_only

        if use_fused_rmsnorm:
            norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
        else:
            norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
        self.norm_layer_for_blocks = norm_layer_for_blocks
        self.patch_embed = PatchEmbed(
            img_size, patch_size, in_chans, embed_dim,
            num_frames=num_frames, tubelet_size=tubelet_size,
        )
        num_patches = self.patch_embed.num_patches
        num_img_patches = self.patch_embed.num_img_patches
        # print(f"num_patches: {num_patches}, num_img_patches: {num_img_patches}")
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        
        # stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
        self.sep_pos_embed = sep_pos_embed
        self.sep_image_video_pos_embed = sep_image_video_pos_embed
        if sep_pos_embed:
            raise NotImplementedError
        else:
            if sep_image_video_pos_embed:
                logger.info("Use joint position embedding, for image and video we use different pos_embed.")
                self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
                self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim))
            else:
                logger.info("Use joint position embedding, for image and video we use same pos_embed.")
                self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        # choose which layer to use checkpoint
        with_cp_list = [False] * depth
        if use_checkpoint:
            for idx in range(depth):
                if idx < checkpoint_num:
                    with_cp_list[idx] = True
        logger.info(f"Droppath rate: {dpr}")
        logger.info(f"Checkpoint list: {with_cp_list}")
        
        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
                  norm_layer=norm_layer_for_blocks,
                  drop_path=dpr[i], init_values=init_values, attn_drop=0.,
                  use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
                  fused_mlp_heuristic=fused_mlp_heuristic,
                  with_cp=with_cp_list[i],
                  qk_normalization=qk_normalization,
                  layerscale_no_force_fp32=layerscale_no_force_fp32,
                  use_fused_rmsnorm=use_fused_rmsnorm)
            for i in range(depth)])
        
        if not self.x_vis_only:
            self.clip_projector = AttentionPoolingBlock(
                dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
                drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
        

        
        self.init_pos_embed()
        # trunc_normal_(self.cls_token, std=.02)
        # self.apply(self._init_weights)
        # self.fix_init_weight()

    def init_pos_embed(self):
        logger.info("Init pos_embed from sincos pos_embed")
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            pos_embed = get_3d_sincos_pos_embed(
                self.pos_embed.shape[-1], 
                self.patch_embed.grid_size[1], # height & weight
                self.patch_embed.grid_size[0], # t_size
                cls_token=True
            )
            self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

            if self.sep_image_video_pos_embed:
                img_pos_embed = get_3d_sincos_pos_embed(
                    self.pos_embed.shape[-1], 
                    self.patch_embed.grid_size[1], # height & weight
                    1,
                    cls_token=True
                )
                self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0))


    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)
    
    @property
    def dtype(self):
        return self.patch_embed.proj.weight.dtype

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'pos_embed', 
            'pos_embed_spatial', 
            'pos_embed_temporal', 
            'pos_embed_cls',
            'img_pos_embed',
            'cls_token'
        }
    
    def expand_pos_embed(self, pos_embed, new_t_size, L, use_vitar_fuzzing=False):
        '''
        @param: 
            pos_embed: original pos_embed, (1, T*L + 1, embed_dim)
            T: frames
            L: w * h
            method: interpolation method
        '''
        pos_embed_checkpoint = pos_embed
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_extra_tokens = 1
        
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(self.num_frames / self.patch_embed.tubelet_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(L ** 0.5)
        
        # class_token and dist_token are kept unchanged
        if self.num_frames != new_t_size:
            logger.info(f"Temporal interpolate from {self.num_frames} to {new_t_size} ")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, self.num_frames, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, self.num_frames)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens.cpu(), size=new_t_size, mode='linear').cuda()
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            pos_embed_checkpoint = new_pos_embed
        
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size}")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens.cpu(), size=(new_size, new_size), mode='bicubic', align_corners=False).cuda()
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        
        if use_vitar_fuzzing:
            ...
        
        return new_pos_embed
    
    # @torch.cuda.amp.autocast(enabled=False)
    def forward(self, x, mask=None, use_image=False):
        x = self.patch_embed(x.type(self.dtype))
        # print(f"x.shape: {x.shape} x.dtype: {x.dtype}, model.dtype: {self.dtype}")
        B, T, L, C = x.shape  # T: temporal; L: spatial
        x = x.view([B, T * L, C])

        # append cls token
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # add pos_embed
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            if use_image:
                if self.sep_image_video_pos_embed:
                    pos_embed = self.img_pos_embed
                else:
                    # (1, num_img_patches + 1, embed_dim)
                    # print('origin pos_embed.shape:', self.pos_embed.shape)
                    cls_pos_embed = self.pos_embed[:, 0:1, :]
                    # print('cls_pos_embed.shape:', cls_pos_embed.shape)

                    img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1)
                    # print('img_pos_embed.shape:', img_pos_embed.shape)

                    pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1)
                    # print('final img_pos_embed.shape:', pos_embed.shape)
            else:
                pos_embed = self.pos_embed

        if pos_embed[0].shape != x[0].shape:
            # print(f'pos embed shape {pos_embed.shape} does not match x[0].shape {x[0].shape}')
            pos_embed = self.expand_pos_embed(pos_embed, T, L) # can accelerate here
        assert pos_embed[0].shape == x[0].shape, f'pos embed shape: {pos_embed.shape} not match x[0].shape {x[0].shape}'
        # print("pos_embed.shape:", pos_embed.shape)
        x = x + pos_embed

        # mask tokens, ~mask means visible
        if mask is not None:
            x = x[~mask].reshape(B, -1, C) 
        else:
            x = x.reshape(B, -1, C) 

        residual = None

        for idx, blk in enumerate(self.blocks):
            if isinstance(x, tuple) and len(x) == 2:
                x, residual = x
            x = blk(x, residual=residual)

        if isinstance(x, tuple) and len(x) == 2:
            x, residual = x
            if residual is not None:
                x = x + residual
        
        x_vis = x
        if self.x_vis_only:
            return x_vis
        else:
            x_pool_vis = self.clip_projector(x_vis)
            return x_vis, x_pool_vis, None, None
    

def pretrain_internvideo2_giant_patch14_224_clean(config):
    model = PretrainVisionTransformer_clean(
        in_chans=3, img_size=224, patch_size=14,
        embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11,
        attn_pool_num_heads=16, qkv_bias=False,
        drop_path_rate=0.25,
        init_values=0.00001,
        qk_normalization=True,
        use_flash_attn=config.vision_encoder.get('use_flash_attn', False),
        use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', False),
        use_fused_mlp=config.vision_encoder.get('use_fused_mlp', False),
        fused_mlp_heuristic=1,
        layerscale_no_force_fp32=True,
        num_frames=config.vision_encoder.num_frames,
        tubelet_size=config.vision_encoder.tubelet_size,
        sep_pos_embed=False,
        sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
        use_checkpoint=config.vision_encoder.use_checkpoint,
        checkpoint_num=config.vision_encoder.checkpoint_num,
        x_vis_return_idx=config.vision_encoder.x_vis_return_idx,
        x_vis_only=config.vision_encoder.x_vis_only,
    )

    if config.vision_encoder.pretrained is not None:
        logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
        state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
        interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=4) # NOTE 8f for stage1
        message = model.load_state_dict(state_dict, strict=False)
        logger.info(message)
    else:
        logger.info("No pretrained weights!!!")
    return model



def pretrain_internvideo2_6b_patch14_224_clean(config):
    model = PretrainVisionTransformer_clean(
        in_chans=3, img_size=224, patch_size=14,
        embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4,
        clip_embed_dim=config.vision_encoder.clip_embed_dim,
        attn_pool_num_heads=16, qkv_bias=False,
        drop_path_rate=0.3,
        init_values=0.00001,
        qk_normalization=True,
        use_flash_attn=config.vision_encoder.get('use_flash_attn', True),
        use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', True),
        use_fused_mlp=config.vision_encoder.get('use_fused_mlp', True),
        fused_mlp_heuristic=1,
        layerscale_no_force_fp32=True,
        num_frames=config.vision_encoder.num_frames,
        tubelet_size=config.vision_encoder.tubelet_size,
        sep_pos_embed=False,
        sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
        use_checkpoint=config.vision_encoder.use_checkpoint,
        checkpoint_num=config.vision_encoder.checkpoint_num,
        x_vis_return_idx=config.vision_encoder.x_vis_return_idx,
        x_vis_only=config.vision_encoder.x_vis_only
    )

    if config.vision_encoder.pretrained is not None:
        logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
        state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
        interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=8) # NOTE 8f for stage1
        msg = model.load_state_dict(state_dict, strict=False)
        logger.info(msg)
    else:
        logger.info("No pretrained weights!!!")
    return model