File size: 43,421 Bytes
75c67a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 |
import math
import logging
import torch
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from torch import nn
import torch.utils.checkpoint as checkpoint
from functools import partial
from einops import rearrange
logger = logging.getLogger(__name__)
# try:
# from .flash_attention_class import FlashAttention
# except:
# logger.warn(f'flash_attn is not installed, you can install it by `pip install flash_attn` ')
# try:
# from flash_attn.modules.mlp import FusedMLP
# except:
# logger.warn(f'FusedMLP of flash_attn is not installed!!!')
# try:
# from flash_attn.ops.rms_norm import DropoutAddRMSNorm
# except:
# logger.warn(f'DropoutAddRMSNorm of flash_attn is not installed!!!')
import numpy as np
import torch
import logging
logger = logging.getLogger(__name__)
# --------------------------------------------------------
# 3D sine-cosine position embedding
# References:
# MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
# --------------------------------------------------------
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
"""
grid_size: int of the grid height and width
t_size: int of the temporal size
return:
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
assert embed_dim % 4 == 0
embed_dim_spatial = embed_dim // 4 * 3
embed_dim_temporal = embed_dim // 4
# spatial
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
embed_dim_spatial, grid
)
# temporal
grid_t = np.arange(t_size, dtype=np.float32)
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
embed_dim_temporal, grid_t
)
# concate: [T, H, W] order
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
pos_embed_temporal = np.repeat(
pos_embed_temporal, grid_size**2, axis=1
) # [T, H*W, D // 4]
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
pos_embed_spatial = np.repeat(
pos_embed_spatial, t_size, axis=0
) # [T, H*W, D // 4 * 3]
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
if cls_token:
pos_embed = np.concatenate(
[np.zeros([1, embed_dim]), pos_embed], axis=0
)
return pos_embed
# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate(
[np.zeros([1, embed_dim]), pos_embed], axis=0
)
return pos_embed
def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
"""
t_size: int of the temporal size
return:
pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
"""
grid_t = np.arange(t_size, dtype=np.float32)
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
if cls_token:
pos_embed = np.concatenate(
[np.zeros([1, embed_dim]), pos_embed], axis=0
)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[0]
) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[1]
) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8):
# interpolate position embedding
for pos_name in ['pos_embed', 'clip_pos_embed']:
if pos_name in checkpoint_model:
pos_embed_checkpoint = checkpoint_model[pos_name]
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
num_patches = model.patch_embed.num_patches #
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
# we use 8 frames for pretraining
# new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
new_t_size = model.num_frames // model.tubelet_size
# height (== width) for the checkpoint position embedding
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
# height (== width) for the new position embedding
new_size = int((num_patches // (new_t_size))** 0.5)
# class_token and dist_token are kept unchanged
if orig_t_size != new_t_size:
logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_name] = new_pos_embed
pos_embed_checkpoint = new_pos_embed
# class_token and dist_token are kept unchanged
if orig_size != new_size:
logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_name] = new_pos_embed
if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model:
raise NotImplementedError
def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8):
pos_names = []
for k in checkpoint_model.keys():
if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k: # NOTE 暂时不插值img_pos,高分辨率时可能需要再加
pos_names.append(k)
logger.info(f"pos names list for interpolating: {pos_names}")
assert len(pos_names) > 0, checkpoint_model.keys()
if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys():
raise NotImplementedError
# interpolate position embedding
for pos_name in pos_names:
pos_embed_checkpoint = checkpoint_model[pos_name]
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
num_patches = model.patch_embed.num_patches #
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
# we use 8 frames for pretraining
# new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
new_t_size = model.num_frames // model.tubelet_size
# height (== width) for the checkpoint position embedding
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
# height (== width) for the new position embedding
new_size = int((num_patches // (new_t_size))** 0.5)
# class_token and dist_token are kept unchanged
if orig_t_size != new_t_size:
logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_name] = new_pos_embed
pos_embed_checkpoint = new_pos_embed
# class_token and dist_token are kept unchanged
if orig_size != new_size:
logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_name] = new_pos_embed
def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
if pos_name in checkpoint_model:
pos_embed_checkpoint = checkpoint_model[pos_name]
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
num_patches = model.patch_embed.num_patches #
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
# we use 4 frames for pretraining
new_t_size = model.T
# height (== width) for the checkpoint position embedding
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
# height (== width) for the new position embedding
new_size = int((num_patches // (new_t_size))** 0.5)
# class_token and dist_token are kept unchanged
if orig_t_size != new_t_size:
print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_name] = new_pos_embed
pos_embed_checkpoint = new_pos_embed
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model[pos_name] = new_pos_embed
else:
raise NotImplementedError
class CrossAttention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., attn_head_dim=None, out_dim=None):
super().__init__()
if out_dim is None:
out_dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
assert all_head_dim == dim
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.k = nn.Linear(dim, all_head_dim, bias=False)
self.v = nn.Linear(dim, all_head_dim, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, out_dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, k=None, v=None):
B, N, C = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = self.k_bias
v_bias = self.v_bias
q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim)
k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentiveBlock(nn.Module):
def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
super().__init__()
self.norm1_q = norm_layer(dim)
self.norm1_k = norm_layer(dim)
self.norm1_v = norm_layer(dim)
self.cross_attn = CrossAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
x_q = self.norm1_q(x_q + pos_q)
x_k = self.norm1_k(x_kv + pos_k)
x_v = self.norm1_v(x_kv)
x = self.cross_attn(x_q, k=x_k, v=x_v)
return x
class AttentionPoolingBlock(AttentiveBlock):
def forward(self, x):
x_q = x.mean(1, keepdim=True)
x_kv, pos_q, pos_k = x, 0, 0
x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
x = x.squeeze(1)
return x
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.use_flash_attn = use_flash_attn
if use_flash_attn:
self.causal = causal
self.inner_attn = FlashAttention(attention_dropout=attn_drop)
self.qk_normalization = qk_normalization
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.use_fused_rmsnorm = use_fused_rmsnorm
def _naive_attn(self, x):
B, N, C = x.shape
# print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
attn = ((q * self.scale) @ k.transpose(-2, -1))
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
# print(f"\033[31m这{x.device}是{self.proj.weight.device} {self.proj.bias.device}\033[0m")
# print(f"\033[31m类型{x.dtype}是{self.proj.weight.dtype} {self.proj.bias.dtype}\033[0m")
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
if self.use_fused_rmsnorm:
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
else:
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
)
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
outs = self.proj_drop(outs)
return outs
def forward(self, x):
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
return x
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
bias=True, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Block(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
use_fused_rmsnorm=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
qk_normalization=qk_normalization,
use_fused_rmsnorm=use_fused_rmsnorm)
self.ls1 = nn.Parameter(init_values * torch.ones(dim))
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if use_fused_mlp:
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
else:
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = nn.Parameter(init_values * torch.ones(dim))
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.with_cp = with_cp
self.use_fused_rmsnorm = use_fused_rmsnorm
def forward(self, x, residual=None):
def _inner_forward(x, residual=None):
if self.use_fused_rmsnorm:
x, residual = self.norm1(x, residual)
x = self.drop_path1(self.ls1 * self.attn(x) )
x, residual = self.norm2(x, residual)
x = self.drop_path2(self.ls2 * self.mlp(x) )
return x, residual
else:
assert residual is None
x = x + self.drop_path1(self.ls1 * self.attn(self.norm1(x)))
x = x + self.drop_path2(self.ls2 * self.mlp(self.norm2(x)))
return x
if self.with_cp:
# print(f"\033[31m use_checkpoint [0m")
return checkpoint.checkpoint(_inner_forward, x, residual)
else:
return _inner_forward(x, residual=residual)
class PatchEmbed(nn.Module):
""" 3D Image to Patch Embedding
"""
def __init__(
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
num_frames=8, tubelet_size=1, norm_layer=None
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.tubelet_size = tubelet_size
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1]
) # (T, H, W)
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
self.num_img_patches = self.grid_size[1] * self.grid_size[2]
self.proj = nn.Conv3d(
in_channels=in_chans, out_channels=embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1])
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C
x = self.norm(x)
return x
class PretrainVisionTransformer_clean(nn.Module):
def __init__(
self,
in_chans: int = 3,
patch_size: int = 14,
img_size: int = 224,
qkv_bias: bool = False, # follow internvl_clip to set False
drop_path_rate: float = 0.25, # may need ablation
embed_dim: int = 1408,
num_heads: int = 16,
mlp_ratio: float = 48/11,
init_values: float = 1e-5, # may need ablation
qk_normalization: bool = True,
depth: int = 40,
use_flash_attn: bool = True,
use_fused_rmsnorm: bool = True,
use_fused_mlp: bool = True,
fused_mlp_heuristic: int = 1,
attn_pool_num_heads: int = 16,
clip_embed_dim: int = 768,
layerscale_no_force_fp32: bool = False, # whether True for training?
num_frames: int = 8,
tubelet_size: int = 1,
sep_pos_embed: bool = False,
sep_image_video_pos_embed: bool = False,
use_checkpoint: bool = False,
checkpoint_num: int = 0,
# for unmasked teacher
x_vis_return_idx=-1,
x_vis_only=False
):
super().__init__()
self.num_frames = num_frames
self.tubelet_size = tubelet_size
assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent'
self.use_flash_attn = use_flash_attn
self.embed_dim = embed_dim
logger.info(f"Origin depth: {depth}")
depth = depth + x_vis_return_idx + 1
logger.info(f"New depth: {depth}")
self.depth = depth
self.x_vis_only = x_vis_only
if use_fused_rmsnorm:
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
else:
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
self.norm_layer_for_blocks = norm_layer_for_blocks
self.patch_embed = PatchEmbed(
img_size, patch_size, in_chans, embed_dim,
num_frames=num_frames, tubelet_size=tubelet_size,
)
num_patches = self.patch_embed.num_patches
num_img_patches = self.patch_embed.num_img_patches
# print(f"num_patches: {num_patches}, num_img_patches: {num_img_patches}")
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
self.sep_pos_embed = sep_pos_embed
self.sep_image_video_pos_embed = sep_image_video_pos_embed
if sep_pos_embed:
raise NotImplementedError
else:
if sep_image_video_pos_embed:
logger.info("Use joint position embedding, for image and video we use different pos_embed.")
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim))
else:
logger.info("Use joint position embedding, for image and video we use same pos_embed.")
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
# choose which layer to use checkpoint
with_cp_list = [False] * depth
if use_checkpoint:
for idx in range(depth):
if idx < checkpoint_num:
with_cp_list[idx] = True
logger.info(f"Droppath rate: {dpr}")
logger.info(f"Checkpoint list: {with_cp_list}")
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
norm_layer=norm_layer_for_blocks,
drop_path=dpr[i], init_values=init_values, attn_drop=0.,
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
fused_mlp_heuristic=fused_mlp_heuristic,
with_cp=with_cp_list[i],
qk_normalization=qk_normalization,
layerscale_no_force_fp32=layerscale_no_force_fp32,
use_fused_rmsnorm=use_fused_rmsnorm)
for i in range(depth)])
if not self.x_vis_only:
self.clip_projector = AttentionPoolingBlock(
dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
self.init_pos_embed()
# trunc_normal_(self.cls_token, std=.02)
# self.apply(self._init_weights)
# self.fix_init_weight()
def init_pos_embed(self):
logger.info("Init pos_embed from sincos pos_embed")
if self.sep_pos_embed:
raise NotImplementedError
else:
pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1],
self.patch_embed.grid_size[1], # height & weight
self.patch_embed.grid_size[0], # t_size
cls_token=True
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
if self.sep_image_video_pos_embed:
img_pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1],
self.patch_embed.grid_size[1], # height & weight
1,
cls_token=True
)
self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0))
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@property
def dtype(self):
return self.patch_embed.proj.weight.dtype
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {
'pos_embed',
'pos_embed_spatial',
'pos_embed_temporal',
'pos_embed_cls',
'img_pos_embed',
'cls_token'
}
def expand_pos_embed(self, pos_embed, new_t_size, L, use_vitar_fuzzing=False):
'''
@param:
pos_embed: original pos_embed, (1, T*L + 1, embed_dim)
T: frames
L: w * h
method: interpolation method
'''
pos_embed_checkpoint = pos_embed
embedding_size = pos_embed_checkpoint.shape[-1]
num_extra_tokens = 1
# height (== width) for the checkpoint position embedding
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(self.num_frames / self.patch_embed.tubelet_size)) ** 0.5)
# height (== width) for the new position embedding
new_size = int(L ** 0.5)
# class_token and dist_token are kept unchanged
if self.num_frames != new_t_size:
logger.info(f"Temporal interpolate from {self.num_frames} to {new_t_size} ")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
pos_tokens = pos_tokens.view(1, self.num_frames, -1, embedding_size)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, self.num_frames)
pos_tokens = torch.nn.functional.interpolate(pos_tokens.cpu(), size=new_t_size, mode='linear').cuda()
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
pos_embed_checkpoint = new_pos_embed
# class_token and dist_token are kept unchanged
if orig_size != new_size:
logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size}")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens.cpu(), size=(new_size, new_size), mode='bicubic', align_corners=False).cuda()
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
if use_vitar_fuzzing:
...
return new_pos_embed
# @torch.cuda.amp.autocast(enabled=False)
def forward(self, x, mask=None, use_image=False):
x = self.patch_embed(x.type(self.dtype))
# print(f"x.shape: {x.shape} x.dtype: {x.dtype}, model.dtype: {self.dtype}")
B, T, L, C = x.shape # T: temporal; L: spatial
x = x.view([B, T * L, C])
# append cls token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# add pos_embed
if self.sep_pos_embed:
raise NotImplementedError
else:
if use_image:
if self.sep_image_video_pos_embed:
pos_embed = self.img_pos_embed
else:
# (1, num_img_patches + 1, embed_dim)
# print('origin pos_embed.shape:', self.pos_embed.shape)
cls_pos_embed = self.pos_embed[:, 0:1, :]
# print('cls_pos_embed.shape:', cls_pos_embed.shape)
img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1)
# print('img_pos_embed.shape:', img_pos_embed.shape)
pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1)
# print('final img_pos_embed.shape:', pos_embed.shape)
else:
pos_embed = self.pos_embed
if pos_embed[0].shape != x[0].shape:
# print(f'pos embed shape {pos_embed.shape} does not match x[0].shape {x[0].shape}')
pos_embed = self.expand_pos_embed(pos_embed, T, L) # can accelerate here
assert pos_embed[0].shape == x[0].shape, f'pos embed shape: {pos_embed.shape} not match x[0].shape {x[0].shape}'
# print("pos_embed.shape:", pos_embed.shape)
x = x + pos_embed
# mask tokens, ~mask means visible
if mask is not None:
x = x[~mask].reshape(B, -1, C)
else:
x = x.reshape(B, -1, C)
residual = None
for idx, blk in enumerate(self.blocks):
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
x = blk(x, residual=residual)
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
if residual is not None:
x = x + residual
x_vis = x
if self.x_vis_only:
return x_vis
else:
x_pool_vis = self.clip_projector(x_vis)
return x_vis, x_pool_vis, None, None
def pretrain_internvideo2_giant_patch14_224_clean(config):
model = PretrainVisionTransformer_clean(
in_chans=3, img_size=224, patch_size=14,
embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11,
attn_pool_num_heads=16, qkv_bias=False,
drop_path_rate=0.25,
init_values=0.00001,
qk_normalization=True,
use_flash_attn=config.vision_encoder.get('use_flash_attn', False),
use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', False),
use_fused_mlp=config.vision_encoder.get('use_fused_mlp', False),
fused_mlp_heuristic=1,
layerscale_no_force_fp32=True,
num_frames=config.vision_encoder.num_frames,
tubelet_size=config.vision_encoder.tubelet_size,
sep_pos_embed=False,
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
use_checkpoint=config.vision_encoder.use_checkpoint,
checkpoint_num=config.vision_encoder.checkpoint_num,
x_vis_return_idx=config.vision_encoder.x_vis_return_idx,
x_vis_only=config.vision_encoder.x_vis_only,
)
if config.vision_encoder.pretrained is not None:
logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=4) # NOTE 8f for stage1
message = model.load_state_dict(state_dict, strict=False)
logger.info(message)
else:
logger.info("No pretrained weights!!!")
return model
def pretrain_internvideo2_6b_patch14_224_clean(config):
model = PretrainVisionTransformer_clean(
in_chans=3, img_size=224, patch_size=14,
embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4,
clip_embed_dim=config.vision_encoder.clip_embed_dim,
attn_pool_num_heads=16, qkv_bias=False,
drop_path_rate=0.3,
init_values=0.00001,
qk_normalization=True,
use_flash_attn=config.vision_encoder.get('use_flash_attn', True),
use_fused_rmsnorm=config.vision_encoder.get('use_fused_rmsnorm', True),
use_fused_mlp=config.vision_encoder.get('use_fused_mlp', True),
fused_mlp_heuristic=1,
layerscale_no_force_fp32=True,
num_frames=config.vision_encoder.num_frames,
tubelet_size=config.vision_encoder.tubelet_size,
sep_pos_embed=False,
sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
use_checkpoint=config.vision_encoder.use_checkpoint,
checkpoint_num=config.vision_encoder.checkpoint_num,
x_vis_return_idx=config.vision_encoder.x_vis_return_idx,
x_vis_only=config.vision_encoder.x_vis_only
)
if config.vision_encoder.pretrained is not None:
logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
interpolate_pos_embed_internvideo2(state_dict, model, orig_t_size=8) # NOTE 8f for stage1
msg = model.load_state_dict(state_dict, strict=False)
logger.info(msg)
else:
logger.info("No pretrained weights!!!")
return model |