mihaimasala's picture
Update README.md
f4f89c0 verified
|
raw
history blame
3.83 kB
metadata
license: cc-by-nc-4.0
language:
  - ro

Model Card for Model ID

RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the instruct 7B model. Links to other models can be found at the bottom of this page.

Built with Meta Llama 3

Model Details

Model Description

OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.

  • Developed by: OpenLLM-Ro
  • Language(s): Romanian
  • License: cc-by-nc-4.0
  • Finetuned from model: Meta-Llama-3-8B

Model Sources

Intended Use

Intended Use Cases

RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.

Out-of-Scope Use

Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct")

instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
chat = [
        {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
        {"role": "user", "content": instruction},
        ]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))

Benchmarks

Model Average ARC MMLU Winogrande HellaSwag GSM8k TruthfulQA
Llama-3-8B-Instruct 50.15 43.73 49.02 59.35 53.16 44.12 51.52
RoLlama3-8b-Instruct 50.61 44.66 52.19 67.58 57.65 30.20 51.39

MT-Bench

Model Average 1st turn 2nd turn
Llama-3-8B-Instruct 5.92 6.36 5.49
RoLlama3-8b-Instruct 5.28 6.10 4.45

RoGemma Model Family

Model Link
RoLlama3-7b-Instruct link