File size: 7,906 Bytes
64300ed
 
1d2dc7d
 
 
 
 
 
64300ed
1d2dc7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7397626
d050b3f
590b4b9
8499a6e
590b4b9
1d2dc7d
 
 
9d4a4d9
6da2969
 
201dd8a
 
 
 
 
1d2dc7d
 
 
 
4a8c07f
 
 
 
7af1936
 
201dd8a
 
144fe25
 
 
 
 
8fd5614
 
144fe25
1d2dc7d
 
 
 
7af1936
 
 
 
 
 
 
 
201dd8a
 
 
1d2dc7d
 
 
7af1936
 
 
 
 
 
1d2dc7d
 
 
 
 
 
 
 
 
 
 
 
 
201dd8a
 
 
 
 
 
 
1d2dc7d
0226389
 
 
 
 
 
 
 
 
1d2dc7d
 
 
8499a6e
1d2dc7d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
license: apache-2.0
language:
- en
- zh
pipeline_tag: text-generation
tags:
- ' TransNormerLLM'
---

<div align="center">
<h1>
  TransNormerLLM3 -- A Faster and Better LLM
</h1>
</div>

# Introduction

This official repository unveils the TransNormerLLM3 model along with its open-source weights for every 50 billion tokens processed during pre-training.

[TransNormerLLM](https://arxiv.org/abs/2307.14995) evolving from [TransNormer](https://arxiv.org/abs/2210.10340), standing out as the first LLM within the linear transformer architecture. Additionally, it distinguishes itself by being the first non-Transformer LLM to exceed both traditional Transformer and other efficient Transformer models (such as, RetNet and Mamba) in terms of speed and performance.


# TransNormerLLM3
- **TransNormerLLM3-15B** features **14.83 billion** parameters. It is structured with **42 layers**, includes **40 attention heads**, and has a total **embedding size of 5120**.
- **TransNormerLLM3-15B** is purely intergrated with **[Lightning Attention-2](http://arxiv.org/abs/2401.04658)**, which can maintain a **stable TGS** during training of **unlimited sequence lengths**, up until encountering firm limitations like GPU memory constraints.   
- **Titoken** tokenizer is used with a total **vocabulary size** of about **100,000**. 
<p align="center">
  <img src="./images/TransNormer3.jpg" width="65%" />
</p>

### Pre-training Logbook
* Realtime Track: https://api.wandb.ai/links/opennlplab/kip314lq  
* Join to dicussion: [discord](https://discord.gg/JEU3nTcWKC) <<<>>> [wechat group](https://github.com/OpenNLPLab/TransnormerLLM/blob/main/images/contact_me_qr.png)
  
> --23.12.25-- startup: [WeChat - 预训练启航](https://mp.weixin.qq.com/s/YjUY-uy89WkF75_-rBTuKw)  <<<>>>  [Twitter - Pre-training Commences ](https://twitter.com/opennlplab/status/1739568669502611825) <<<>>> [YouTube Recording](https://t.co/wk7svS4o5r)   <<<>>> [bilibili 回放](https://www.bilibili.com/video/BV11j411J7Dy)  
> --24.01.02-- first week review: [WeChat - 第一周概览](https://mp.weixin.qq.com/s/zwGnZZI3itNPoxzzXkuU2w) <<<>>>   [Twitter - Week 1 Review](https://twitter.com/opennlplab/status/1742187694078501038)  
> --24.01.09-- second week review: [WeChat - 第二周概览](https://mp.weixin.qq.com/s/6D0qi-0aBier05OKuHfPEA) <<<>>>   [Twitter - Week 2 Review](https://twitter.com/opennlplab/status/1744720007299523063)  
> --24.01.15-- third week review: [WeChat - 第三周概览](https://mp.weixin.qq.com/s/EQg8evZ2cNtAk4HruwCXPA) <<<>>>   [Twitter - Week 3 Review](https://twitter.com/opennlplab/status/1746920293069910190)  
> --24.01.23-- third week review: [WeChat - 第四周概览](https://mp.weixin.qq.com/s/l7LrFGQKkPU38exUtSF4cw) <<<>>>   [Twitter - Week 4  Review](https://twitter.com/opennlplab/status/1749821039360840001)  
> --24.01.30-- third week review: [WeChat - 第五周概览](https://mp.weixin.qq.com/s/OgtQIb749IbX6y5C01bLFg) <<<>>>   [Twitter - Week 5 Review](https://twitter.com/opennlplab/status/1752366090754425283)  


# Released Weights

|  param  | token |                                                      Hugging Face                                                      | Model Scope | Wisemodel |
| :-----: | :---: | :--------------------------------------------------------------------------------------------------------------------: | :---------: | :-------: |
| **15B** |  50B  | 🤗[step13000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step13000-50Btokens)  |      🤖      |     🐯     |
| **15B** | 100B  | 🤗[step26000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step26000-100Btokens) |      🤖      |     🐯     |
| **15B** | 150B  | 🤗[step39000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step39000-150Btokens) |      🤖      |     🐯     |
| **15B** | 200B  | 🤗[step52000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step52000-200Btokens) |      🤖      |     🐯     |
| **15B** | 250B  | 🤗[step65000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step65000-250Btokens) |      🤖      |     🐯     |
| **15B** | 300B  | 🤗[step78000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step78000-300Btokens) |      🤖      |     🐯     |


```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints", revision='step26000-100Btokens', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints", torch_dtype=torch.bfloat16, revision='step26000-100Btokens', device_map="auto", trust_remote_code=True)
```

# Benchmark Results
The evaluations of all models are conducted using the official settings and the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) framework.

| Model                   | P   | T    | BoolQ | PIQA  | HS    | WG    | ARC-e | ARC-c | OBQA  | C-Eval | MMLU  |
| ----------------------- | --- | ---- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ------ | ----- |
| **TransNormerLLM3-15B** | 15  | 0.05 | 62.08 | 72.52 | 55.55 | 57.14 | 62.12 | 31.14 | 32.40 | 26.18  | 27.50 |
| **TransNormerLLM3-15B** | 15  | 0.10 | 63.98 | 74.70 | 61.09 | 61.33 | 65.95 | 34.64 | 35.60 | 25.38  | 27.40 |
| **TransNormerLLM3-15B** | 15  | 0.15 | 60.34 | 75.08 | 63.99 | 62.04 | 64.56 | 34.90 | 35.20 | 22.64  | 26.60 |
| **TransNormerLLM3-15B** | 15  | 0.20 | 52.05 | 74.48 | 64.72 | 62.75 | 66.16 | 35.15 | 36.80 | 27.25  | 30.80 |
| **TransNormerLLM3-15B** | 15  | 0.25 | 66.70 | 76.50 | 66.51 | 64.80 | 66.84 | 36.18 | 39.40 | 30.87  | 36.10 |
| **TransNormerLLM3-15B** | 15  | 0.30 | 67.00 | 76.50 | 67.17 | 64.40 | 66.29 | 36.77 | 38.80 | 33.99  | 37.60 |
| **TransNormerLLM3-15B** | 15  | 0.35 | 65.78 | 75.46 | 67.88 | 66.54 | 67.34 | 38.57 | 39.60 | 36.02  | 39.20 |
| **TransNormerLLM3-15B** | 15  | 0.40 | 67.34 | 75.24 | 68.51 | 66.22 | 68.94 | 40.10 | 39.20 | 41.10  | 39.01 |


> **P**: parameter size (billion). **T**: tokens (trillion). **BoolQ**: acc. **PIQA**: acc. **HellaSwag**: acc_norm. **WinoGrande**: acc. **ARC-easy**: acc. **ARC-challenge**: acc_norm. **OpenBookQA**: acc_norm. **MMLU**: 5-shot acc. **C-Eval**: 5-shot acc.

```bash
# Please configure the following settings when do evaluation
export do_eval=True
export use_triton=False
```


# Acknowledgments and Citation

## Acknowledgments
Our project is developed based on the following open source projects:
- [tiktoken](https://github.com/openai/tiktoken) for the tokenizer.
- [metaseq](https://github.com/facebookresearch/metaseq) for training.
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) for evaluation.


## Citation
If you wish to cite our work, please use the following reference:
```
@misc{qin2024transnormerllm,
      title={TransNormerLLM: A Faster and Better Large Language Model with Improved TransNormer}, 
      author={Zhen Qin and Dong Li and Weigao Sun and Weixuan Sun and Xuyang Shen and Xiaodong Han and Yunshen Wei and Baohong Lv and Xiao Luo and Yu Qiao and Yiran Zhong},
      year={2024},
      eprint={2307.14995},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@misc{qin2024lightning,
      title={Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models}, 
      author={Zhen Qin and Weigao Sun and Dong Li and Xuyang Shen and Weixuan Sun and Yiran Zhong},
      year={2024},
      eprint={2401.04658},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

<p align="center">
  <img src="./images/lightning3-leopard.jpg" width="50%" />
  - OpenNLPLab @2024 -
</p>