File size: 14,698 Bytes
64300ed 1d2dc7d 64300ed 1d2dc7d 39c0658 1d2dc7d 0e06ad0 d050b3f 0e06ad0 590b4b9 8499a6e 590b4b9 1d2dc7d 9d4a4d9 6da2969 201dd8a f3bfc9d 1d2dc7d 0e06ad0 9600986 144fe25 9600986 144fe25 1d2dc7d 0e06ad0 9600986 1d2dc7d 7af1936 1d2dc7d 201dd8a 1d2dc7d 0226389 0e06ad0 1d2dc7d 8499a6e 1d2dc7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: apache-2.0
language:
- en
- zh
pipeline_tag: text-generation
tags:
- ' TransNormerLLM'
---
<div align="center">
<h1>
TransNormerLLM3 -- A Faster and Better LLM
</h1>
</div>
# Introduction
This official repository unveils the TransNormerLLM3 model along with its open-source weights for every 50 billion tokens processed during pre-training.
[TransNormerLLM](https://arxiv.org/abs/2307.14995) evolving from [TransNormer](https://arxiv.org/abs/2210.10340), standing out as the first LLM within the linear transformer architecture. Additionally, it distinguishes itself by being the first non-Transformer LLM to exceed both traditional Transformer and other efficient Transformer models (such as, RetNet and Mamba) in terms of speed and performance.
> [email protected]: We plan to scale the sequence length in pre-training stage to **10 million**: https://twitter.com/opennlplab/status/1776894730015789300
# TransNormerLLM3
- **TransNormerLLM3-15B** features **14.83 billion** parameters. It is structured with **42 layers**, includes **40 attention heads**, and has a total **embedding size of 5120**.
- **TransNormerLLM3-15B** is purely intergrated with **[Lightning Attention-2](http://arxiv.org/abs/2401.04658)**, which can maintain a **stable TGS** during training of **unlimited sequence lengths**, up until encountering firm limitations like GPU memory constraints.
- **Titoken** tokenizer is used with a total **vocabulary size** of about **100,000**.
- Our **training framework** has been enhanced with integration to **[LASP](https://arxiv.org/abs/2404.02882) (Linear Attention Sequence Parallelism)**, allowing for sequence parallelism within linear attention models.
- Our **training framework** now supprts **[CO2](https://arxiv.org/abs/2401.16265)**, which introduces **local updates** and **asynchronous communication** into distributed data parallel training, achieving **full overlap** of communication and computation.
<p align="center">
<img src="./images/TransNormer3.jpg" width="65%" />
</p>
### Pre-training Logbook
* Realtime Track: https://api.wandb.ai/links/opennlplab/kip314lq
* Join to dicussion: [discord](https://discord.gg/JEU3nTcWKC) <<<>>> [wechat group](https://github.com/OpenNLPLab/TransnormerLLM/blob/main/images/contact_me_qr.png)
> --23.12.25-- startup: [WeChat - ้ข่ฎญ็ปๅฏ่ช](https://mp.weixin.qq.com/s/YjUY-uy89WkF75_-rBTuKw) <<<>>> [Twitter - Pre-training Commences ](https://twitter.com/opennlplab/status/1739568669502611825) <<<>>> [YouTube Recording](https://t.co/wk7svS4o5r) <<<>>> [bilibili ๅๆพ](https://www.bilibili.com/video/BV11j411J7Dy)
> --24.01.02-- first week review: [WeChat - ็ฌฌไธๅจๆฆ่ง](https://mp.weixin.qq.com/s/zwGnZZI3itNPoxzzXkuU2w) <<<>>> [Twitter - Week 1 Review](https://twitter.com/opennlplab/status/1742187694078501038)
> --24.01.09-- second week review: [WeChat - ็ฌฌไบๅจๆฆ่ง](https://mp.weixin.qq.com/s/6D0qi-0aBier05OKuHfPEA) <<<>>> [Twitter - Week 2 Review](https://twitter.com/opennlplab/status/1744720007299523063)
> --24.01.15-- third week review: [WeChat - ็ฌฌไธๅจๆฆ่ง](https://mp.weixin.qq.com/s/EQg8evZ2cNtAk4HruwCXPA) <<<>>> [Twitter - Week 3 Review](https://twitter.com/opennlplab/status/1746920293069910190)
> --24.01.23-- third week review: [WeChat - ็ฌฌๅๅจๆฆ่ง](https://mp.weixin.qq.com/s/l7LrFGQKkPU38exUtSF4cw) <<<>>> [Twitter - Week 4 Review](https://twitter.com/opennlplab/status/1749821039360840001)
> --24.01.30-- third week review: [WeChat - ็ฌฌไบๅจๆฆ่ง](https://mp.weixin.qq.com/s/OgtQIb749IbX6y5C01bLFg) <<<>>> [Twitter - Week 5 Review](https://twitter.com/opennlplab/status/1752366090754425283)
# Released Weights
| param | token | Hugging Face | Model Scope | Wisemodel |
| :-----: | :---: | :-----------------------------------------------------------------------------------------------------------------------: | :---------: | :-------: |
| **15B** | 50B | ๐ค[step13000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step13000-50Btokens) | ๐ค | ๐ฏ |
| **15B** | 100B | ๐ค[step26000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step26000-100Btokens) | ๐ค | ๐ฏ |
| **15B** | 150B | ๐ค[step39000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step39000-150Btokens) | ๐ค | ๐ฏ |
| **15B** | 200B | ๐ค[step52000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step52000-200Btokens) | ๐ค | ๐ฏ |
| **15B** | 250B | ๐ค[step65000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step65000-250Btokens) | ๐ค | ๐ฏ |
| **15B** | 300B | ๐ค[step78000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step78000-300Btokens) | ๐ค | ๐ฏ |
| **15B** | 350B | ๐ค[step92000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step92000-350Btokens) | ๐ค | ๐ฏ |
| **15B** | 400B | ๐ค[step105000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step105000-400Btokens) | ๐ค | ๐ฏ |
| **15B** | 450B | ๐ค[step118000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step118000-450Btokens) | ๐ค | ๐ฏ |
| **15B** | 500B | ๐ค[step131000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step131000-500Btokens) | ๐ค | ๐ฏ |
| **15B** | 550B | ๐ค[step144000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step144000-550Btokens) | ๐ค | ๐ฏ |
| **15B** | 600B | ๐ค[step157000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step157000-600Btokens) | ๐ค | ๐ฏ |
| **15B** | 650B | ๐ค[step170000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step170000-650Btokens) | ๐ค | ๐ฏ |
| **15B** | 700B | ๐ค[step183000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step183000-700Btokens) | ๐ค | ๐ฏ |
| **15B** | 750B | ๐ค[step195500](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step195500-750Btokens) | ๐ค | ๐ฏ |
| **15B** | 800B | ๐ค[step209000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step209000-800Btokens) | ๐ค | ๐ฏ |
| **15B** | 850B | ๐ค[step222000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step222000-850Btokens) | ๐ค | ๐ฏ |
| **15B** | 900B | ๐ค[step235000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step235000-900Btokens) | ๐ค | ๐ฏ |
| **15B** | 950B | ๐ค[step248000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step248000-950Btokens) | ๐ค | ๐ฏ |
| **15B** | 1000B | ๐ค[step261000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step261000-1000Btokens) | ๐ค | ๐ฏ |
| **15B** | 1050B | ๐ค[step274000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step274000-1050Btokens) | ๐ค | ๐ฏ |
| **15B** | 1100B | ๐ค[step287000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step287000-1100Btokens) | ๐ค | ๐ฏ |
| **15B** | 1150B | ๐ค[step300000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step300000-1150Btokens) | ๐ค | ๐ฏ |
| **15B** | 1200B | ๐ค[step313500](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step313500-1200Btokens) | ๐ค | ๐ฏ |
| **15B** | 1250B | ๐ค[step326000](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step287000-1250Btokens) | ๐ค | ๐ฏ |
| **15B** | 1300B | ๐ค[step339500](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/step326000-1300Btokens) | ๐ค | ๐ฏ |
| **15B** | 1345B | ๐ค[stage1](https://huggingface.co/OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints/tree/stage1-1345Btokens) | ๐ค | ๐ฏ |
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints", revision='step235000-900Btokens', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("OpenNLPLab/TransNormerLLM3-15B-Intermediate-Checkpoints", torch_dtype=torch.bfloat16, revision='step235000-900Btokens', device_map="auto", trust_remote_code=True)
```
# Benchmark Results
The evaluations of all models are conducted using the official settings and the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) framework.
| Model | P | T | BoolQ | PIQA | HS | WG | ARC-e | ARC-c | OBQA | C-Eval | MMLU |
| ----------------------- | --- | ------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ------ | ----- |
| **TransNormerLLM3-15B** | 15 | 0.05 | 62.08 | 72.52 | 55.55 | 57.14 | 62.12 | 31.14 | 32.40 | 26.18 | 27.50 |
| **TransNormerLLM3-15B** | 15 | 0.10 | 63.98 | 74.70 | 61.09 | 61.33 | 65.95 | 34.64 | 35.60 | 25.38 | 27.40 |
| **TransNormerLLM3-15B** | 15 | 0.15 | 60.34 | 75.08 | 63.99 | 62.04 | 64.56 | 34.90 | 35.20 | 22.64 | 26.60 |
| **TransNormerLLM3-15B** | 15 | 0.20 | 52.05 | 74.48 | 64.72 | 62.75 | 66.16 | 35.15 | 36.80 | 27.25 | 30.80 |
| **TransNormerLLM3-15B** | 15 | 0.25 | 66.70 | 76.50 | 66.51 | 64.80 | 66.84 | 36.18 | 39.40 | 30.87 | 36.10 |
| **TransNormerLLM3-15B** | 15 | 0.30 | 67.00 | 76.50 | 67.17 | 64.40 | 66.29 | 36.77 | 38.80 | 33.99 | 37.60 |
| **TransNormerLLM3-15B** | 15 | 0.35 | 65.78 | 75.46 | 67.88 | 66.54 | 67.34 | 38.57 | 39.60 | 36.02 | 39.20 |
| **TransNormerLLM3-15B** | 15 | 0.40 | 67.34 | 75.24 | 68.51 | 66.22 | 68.94 | 40.10 | 39.20 | 36.91 | 41.10 |
| **TransNormerLLM3-15B** | 15 | 0.45 | 69.02 | 76.28 | 69.11 | 63.77 | 65.82 | 36.01 | 39.40 | 37.17 | 42.80 |
| **TransNormerLLM3-15B** | 15 | 0.50 | 66.15 | 77.09 | 69.75 | 65.11 | 68.56 | 35.84 | 39.60 | 39.81 | 42.00 |
| **TransNormerLLM3-15B** | 15 | 0.55 | 70.24 | 74.05 | 69.96 | 65.75 | 65.61 | 36.69 | 38.60 | 40.08 | 44.00 |
| **TransNormerLLM3-15B** | 15 | 0.60 | 74.34 | 75.68 | 70.44 | 66.22 | 69.36 | 38.40 | 38.40 | 41.05 | 45.30 |
| **TransNormerLLM3-15B** | 15 | 0.65 | 73.15 | 76.55 | 71.60 | 66.46 | 69.65 | 39.68 | 40.80 | 41.20 | 44.90 |
| **TransNormerLLM3-15B** | 15 | 0.70 | 73.79 | 78.18 | 73.26 | 67.56 | 71.21 | 43.60 | 40.80 | 43.46 | 47.00 |
| **TransNormerLLM3-15B** | 15 | 0.75 | 76.45 | 78.07 | 74.22 | 69.30 | 71.21 | 43.43 | 42.20 | 43.46 | 47.80 |
| **TransNormerLLM3-15B** | 15 | 0.80 | 76.97 | 78.84 | 74.95 | 69.85 | 72.14 | 43.52 | 41.20 | 45.21 | 49.41 |
| **TransNormerLLM3-15B** | 15 | 0.85 | 72.75 | 78.35 | 75.91 | 70.48 | 74.58 | 45.22 | 41.20 | 46.27 | 49.36 |
| **TransNormerLLM3-15B** | 15 | 0.90 | 76.09 | 77.91 | 76.49 | 70.88 | 72.14 | 42.92 | 40.20 | 45.70 | 50.15 |
| **TransNormerLLM3-15B** | 15 | 0.95 | 74.28 | 78.24 | 76.63 | 72.22 | 74.12 | 44.11 | 42.40 | 46.25 | 51.43 |
| **TransNormerLLM3-15B** | 15 | 1.00 | 74.62 | 79.16 | 77.35 | 72.22 | 73.86 | 45.14 | 43.40 | 47.90 | 51.65 |
| **TransNormerLLM3-15B** | 15 | 1.05 | 76.36 | 78.94 | 77.15 | 71.35 | 74.66 | 44.45 | 42.80 | 45.87 | 52.28 |
| **TransNormerLLM3-15B** | 15 | 1.10 | 76.88 | 78.73 | 77.62 | 70.88 | 74.41 | 45.48 | 42.80 | 49.78 | 53.01 |
| **TransNormerLLM3-15B** | 15 | 1.15 | 72.87 | 79.43 | 78.12 | 72.85 | 74.75 | 46.16 | 43.20 | 49.80 | 53.04 |
| **TransNormerLLM3-15B** | 15 | 1.20 | 79.48 | 78.67 | 78.45 | 72.93 | 75.42 | 44.37 | 43.60 | 49.33 | 53.80 |
| **TransNormerLLM3-15B** | 15 | 1.25 | 79.17 | 79.16 | 78.81 | 72.93 | 75.13 | 45.99 | 43.60 | 50.44 | 54.19 |
| **TransNormerLLM3-15B** | 15 | 1.30 | 78.41 | 79.00 | 78.39 | 71.90 | 74.33 | 45.05 | 42.80 | 52.24 | 54.41 |
| **TransNormerLLM3-15B** | 15 | stage1 | 78.75 | 79.27 | 78.33 | 71.35 | 75.97 | 46.42 | 45.00 | 50.25 | 54.50 |
> **P**: parameter size (billion). **T**: tokens (trillion). **BoolQ**: acc. **PIQA**: acc. **HellaSwag**: acc_norm. **WinoGrande**: acc. **ARC-easy**: acc. **ARC-challenge**: acc_norm. **OpenBookQA**: acc_norm. **MMLU**: 5-shot acc. **C-Eval**: 5-shot acc.
# Acknowledgments and Citation
## Acknowledgments
Our project is developed based on the following open source projects:
- [tiktoken](https://github.com/openai/tiktoken) for the tokenizer.
- [metaseq](https://github.com/facebookresearch/metaseq) for training.
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) for evaluation.
## Citation
If you wish to cite our work, please use the following reference:
```
@misc{qin2024transnormerllm,
title={TransNormerLLM: A Faster and Better Large Language Model with Improved TransNormer},
author={Zhen Qin and Dong Li and Weigao Sun and Weixuan Sun and Xuyang Shen and Xiaodong Han and Yunshen Wei and Baohong Lv and Xiao Luo and Yu Qiao and Yiran Zhong},
year={2024},
eprint={2307.14995},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{qin2024lightning,
title={Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models},
author={Zhen Qin and Weigao Sun and Dong Li and Xuyang Shen and Weixuan Sun and Yiran Zhong},
year={2024},
eprint={2401.04658},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{sun2024linear,
title={Linear Attention Sequence Parallelism},
author={Weigao Sun and Zhen Qin and Dong Li and Xuyang Shen and Yu Qiao and Yiran Zhong},
year={2024},
eprint={2404.02882},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<p align="center">
<img src="./images/lightning3-leopard.jpg" width="50%" />
- OpenNLPLab @2024 -
</p> |