code-slerp / README.md
Or4cl3-1's picture
Upload folder using huggingface_hub
8a292dd verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - microsoft/codebert-base
  - EleutherAI/gpt-neo-x-20b
  - openai/codex
  - bigscience/bloom
  - google/jurassic-1-jumbo
  - google/t5-v1_1-large
  - facebook/bart-large
base_model:
  - microsoft/codebert-base
  - EleutherAI/gpt-neo-x-20b
  - openai/codex
  - bigscience/bloom
  - google/jurassic-1-jumbo
  - google/t5-v1_1-large
  - facebook/bart-large

code-slerp

code-slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: microsoft/codebert-base
        layer_range: [0, 32]
      - model: EleutherAI/gpt-neo-x-20b
        layer_range: [0, 32]
      - model: openai/codex
        layer_range: [0, 32]
      - model: bigscience/bloom
        layer_range: [0, 32]
      - model: google/jurassic-1-jumbo
        layer_range: [0, 32]
      - model: google/t5-v1_1-large
        layer_range: [0, 32]
      - model: facebook/bart-large
        layer_range: [0, 32]
merge_method: slerp
base_model: microsoft/codebert-base
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat1

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Or4cl3-1/code-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])