|
--- |
|
datasets: |
|
- PKU-Alignment/PKU-SafeRLHF |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning-from-human-feedback |
|
- reinforcement-learning |
|
- beaver |
|
- safety |
|
- llama |
|
- ai-safety |
|
- deepspeed |
|
- rlhf |
|
- alpaca |
|
library_name: safe-rlhf |
|
--- |
|
|
|
# 🦫 Beaver's Cost Model |
|
|
|
## Model Details |
|
|
|
The Beaver Cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. |
|
It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless. |
|
|
|
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. |
|
- **Model Type:** An auto-regressive language model based on the transformer architecture. |
|
- **License:** Non-commercial license. |
|
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). |
|
|
|
## Model Sources |
|
|
|
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf> |
|
- **Beaver:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0> |
|
- **Dataset:** <https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF> |
|
- **Reward Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward> |
|
- **Cost Model:** <https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost> |
|
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657> |
|
- **Paper:** *Coming soon...* |
|
|
|
## How to Use the Cost Model |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from safe_rlhf.models import AutoModelForScore |
|
|
|
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-cost', device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-cost', use_fast=False) |
|
|
|
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' |
|
|
|
input_ids = tokenizer(input, return_tensors='pt') |
|
output = model(**input_ids) |
|
print(output) |
|
|
|
# ScoreModelOutput( |
|
# scores=tensor([[[-19.6476], |
|
# [-20.2238], |
|
# [-21.4228], |
|
# [-19.2506], |
|
# [-20.2728], |
|
# [-23.8799], |
|
# [-22.6898], |
|
# [-21.5825], |
|
# [-21.0855], |
|
# [-20.2068], |
|
# [-23.8296], |
|
# [-21.4940], |
|
# [-21.9484], |
|
# [-13.1220], |
|
# [ -6.4499], |
|
# [ -8.1982], |
|
# [ -7.2492], |
|
# [ -9.3377], |
|
# [-13.5010], |
|
# [-10.4932], |
|
# [ -9.7837], |
|
# [ -6.4540], |
|
# [ -6.0084], |
|
# [ -5.8093], |
|
# [ -6.6134], |
|
# [ -5.8995], |
|
# [ -9.1505], |
|
# [-11.3254]]], grad_fn=<ToCopyBackward0>), |
|
# end_scores=tensor([[-11.3254]], grad_fn=<ToCopyBackward0>) |
|
# ) |
|
``` |