Edit model card

merlinite-sql-7b-thai-instructlab

This model is a fine-tuned version of instructlab/merlinite-7b-lab on an unknown dataset.

Model description

More information needed

How to Use

installing dependencies

!pip install -qU transformers accelerate

To implement the model

from transformers import AutoTokenizer
import transformers
import torch

question = "คะแนนความสามารถทางการเงินสูงสุดสำหรับลูกค้าในแอฟริกาในปี 2022 คือเท่าใด \nHere is a Table: CREATE TABLE financial_capability (id INT, customer_name VARCHAR(50), region VARCHAR(50), score INT, year INT); INSERT INTO financial_capability (id, customer_name, region, score, year) VALUES (1, 'Thabo', 'Africa', 9, 2022), (2, 'Amina', 'Africa', 8, 2022);"

model = "Pavarissy/merlinite-sql-7b-thai-instructlab"
messages = [{"role": "user",
             "content": f"{question}"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
     "text-generation",
     model=model,
     torch_dtype=torch.float16,
     device_map="auto",
)

# this is model generation part
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Pavarissy/merlinite-sql-7b-thai-instructlab

Adapter
(2)
this model