PavelCodes's picture
End of training
768e1c1
|
raw
history blame
2.72 kB
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: flan-t5-small-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 43.1157

flan-t5-small-samsum

This model is a fine-tuned version of google/flan-t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6670
  • Rouge1: 43.1157
  • Rouge2: 18.7389
  • Rougel: 35.4615
  • Rougelsum: 39.2648
  • Gen Len: 16.9109

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8863 0.22 100 1.7049 42.1055 18.0331 34.7517 38.3767 16.5788
1.8463 0.43 200 1.6947 42.4427 18.2735 34.9451 38.8469 17.3614
1.8548 0.65 300 1.6792 42.6324 18.5506 35.1724 38.8717 17.1514
1.8358 0.87 400 1.6772 42.2127 18.2031 34.8749 38.3969 16.5873
1.8129 1.08 500 1.6729 42.6431 18.6961 35.4006 38.8667 16.9170
1.8068 1.3 600 1.6709 42.5591 18.3093 35.1272 38.6379 16.9451
1.7973 1.52 700 1.6687 42.8925 18.6265 35.292 38.9546 16.7546
1.7979 1.74 800 1.6668 42.9455 18.7294 35.4018 39.099 16.8791
1.7899 1.95 900 1.6670 43.1157 18.7389 35.4615 39.2648 16.9109

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0