Petrovilija's picture
End of training
0f4d980
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: flan-t5-small-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 42.739

flan-t5-small-samsum

This model is a fine-tuned version of google/flan-t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6754
  • Rouge1: 42.739
  • Rouge2: 18.3741
  • Rougel: 35.2588
  • Rougelsum: 38.893
  • Gen Len: 16.8474

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 52
  • eval_batch_size: 52
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8824 0.35 100 1.7015 42.5324 18.3468 35.0528 38.7814 16.6532
1.8578 0.7 200 1.6878 42.0766 18.2423 34.9442 38.4806 16.7216
1.835 1.06 300 1.6823 42.8147 18.6292 35.4054 38.956 16.9048
1.8144 1.41 400 1.6786 42.6886 18.402 35.3235 38.8638 16.6618
1.8094 1.76 500 1.6754 42.739 18.3741 35.2588 38.893 16.8474

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0