Edit model card

13E-affecthq-fer-balanced

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on Piro17/balancednumber-affecthqnet-fer2013 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0526
  • Accuracy: 0.6225
  • Precision: 0.6161
  • Recall: 0.6225
  • F1: 0.6167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 17
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7863 1.0 133 1.7632 0.4005 0.3617 0.4005 0.3058
1.3653 2.0 266 1.3630 0.5049 0.4838 0.5049 0.4445
1.2468 3.0 399 1.2475 0.5466 0.5451 0.5466 0.5115
1.1527 4.0 532 1.1865 0.5761 0.5612 0.5761 0.5580
1.0862 5.0 665 1.1448 0.5785 0.5687 0.5785 0.5659
1.064 6.0 798 1.1108 0.5972 0.5867 0.5972 0.5853
1.0037 7.0 931 1.0969 0.6019 0.5968 0.6019 0.5946
0.9533 8.0 1064 1.0764 0.6126 0.6034 0.6126 0.6046
0.9063 9.0 1197 1.0711 0.6155 0.6035 0.6155 0.6047
0.8666 10.0 1330 1.0589 0.6173 0.6107 0.6173 0.6108
0.8364 11.0 1463 1.0556 0.6178 0.6110 0.6178 0.6108
0.8659 12.0 1596 1.0521 0.6197 0.6141 0.6197 0.6151
0.8383 13.0 1729 1.0526 0.6225 0.6161 0.6225 0.6167

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Piro17/13E-affecthq-fer-balanced