13E-affecthq-fer-balanced
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on Piro17/balancednumber-affecthqnet-fer2013 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0526
- Accuracy: 0.6225
- Precision: 0.6161
- Recall: 0.6225
- F1: 0.6167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 17
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 13
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.7863 | 1.0 | 133 | 1.7632 | 0.4005 | 0.3617 | 0.4005 | 0.3058 |
1.3653 | 2.0 | 266 | 1.3630 | 0.5049 | 0.4838 | 0.5049 | 0.4445 |
1.2468 | 3.0 | 399 | 1.2475 | 0.5466 | 0.5451 | 0.5466 | 0.5115 |
1.1527 | 4.0 | 532 | 1.1865 | 0.5761 | 0.5612 | 0.5761 | 0.5580 |
1.0862 | 5.0 | 665 | 1.1448 | 0.5785 | 0.5687 | 0.5785 | 0.5659 |
1.064 | 6.0 | 798 | 1.1108 | 0.5972 | 0.5867 | 0.5972 | 0.5853 |
1.0037 | 7.0 | 931 | 1.0969 | 0.6019 | 0.5968 | 0.6019 | 0.5946 |
0.9533 | 8.0 | 1064 | 1.0764 | 0.6126 | 0.6034 | 0.6126 | 0.6046 |
0.9063 | 9.0 | 1197 | 1.0711 | 0.6155 | 0.6035 | 0.6155 | 0.6047 |
0.8666 | 10.0 | 1330 | 1.0589 | 0.6173 | 0.6107 | 0.6173 | 0.6108 |
0.8364 | 11.0 | 1463 | 1.0556 | 0.6178 | 0.6110 | 0.6178 | 0.6108 |
0.8659 | 12.0 | 1596 | 1.0521 | 0.6197 | 0.6141 | 0.6197 | 0.6151 |
0.8383 | 13.0 | 1729 | 1.0526 | 0.6225 | 0.6161 | 0.6225 | 0.6167 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.