|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 20E-affecthq |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7188003869719445 |
|
- name: Precision |
|
type: precision |
|
value: 0.7219837313936599 |
|
- name: Recall |
|
type: recall |
|
value: 0.7188003869719445 |
|
- name: F1 |
|
type: f1 |
|
value: 0.718989971086903 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 20E-affecthq |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8271 |
|
- Accuracy: 0.7188 |
|
- Precision: 0.7220 |
|
- Recall: 0.7188 |
|
- F1: 0.7190 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 17 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.9149 | 1.0 | 194 | 1.8887 | 0.3750 | 0.3413 | 0.3750 | 0.3045 | |
|
| 1.2903 | 2.0 | 388 | 1.2485 | 0.5792 | 0.5726 | 0.5792 | 0.5526 | |
|
| 1.071 | 3.0 | 582 | 1.0587 | 0.6321 | 0.6258 | 0.6321 | 0.6228 | |
|
| 1.0185 | 4.0 | 776 | 0.9817 | 0.6617 | 0.6584 | 0.6617 | 0.6553 | |
|
| 0.894 | 5.0 | 970 | 0.9293 | 0.6869 | 0.6872 | 0.6869 | 0.6820 | |
|
| 0.8283 | 6.0 | 1164 | 0.8881 | 0.6936 | 0.6929 | 0.6936 | 0.6905 | |
|
| 0.8185 | 7.0 | 1358 | 0.8659 | 0.6982 | 0.7011 | 0.6982 | 0.6988 | |
|
| 0.7499 | 8.0 | 1552 | 0.8558 | 0.7046 | 0.7050 | 0.7046 | 0.7021 | |
|
| 0.7219 | 9.0 | 1746 | 0.8399 | 0.7124 | 0.7165 | 0.7124 | 0.7127 | |
|
| 0.7382 | 10.0 | 1940 | 0.8300 | 0.7159 | 0.7184 | 0.7159 | 0.7145 | |
|
| 0.6392 | 11.0 | 2134 | 0.8329 | 0.7088 | 0.7135 | 0.7088 | 0.7095 | |
|
| 0.6549 | 12.0 | 2328 | 0.8297 | 0.7133 | 0.7135 | 0.7133 | 0.7120 | |
|
| 0.6762 | 13.0 | 2522 | 0.8180 | 0.7156 | 0.7162 | 0.7156 | 0.7153 | |
|
| 0.5937 | 14.0 | 2716 | 0.8271 | 0.7188 | 0.7220 | 0.7188 | 0.7190 | |
|
| 0.569 | 15.0 | 2910 | 0.8245 | 0.7178 | 0.7175 | 0.7178 | 0.7165 | |
|
| 0.5623 | 16.0 | 3104 | 0.8228 | 0.7165 | 0.7153 | 0.7165 | 0.7157 | |
|
| 0.5291 | 17.0 | 3298 | 0.8238 | 0.7162 | 0.7165 | 0.7162 | 0.7156 | |
|
| 0.5775 | 18.0 | 3492 | 0.8246 | 0.7153 | 0.7162 | 0.7153 | 0.7151 | |
|
| 0.545 | 19.0 | 3686 | 0.8257 | 0.7178 | 0.7192 | 0.7178 | 0.7174 | |
|
| 0.5409 | 20.0 | 3880 | 0.8245 | 0.7178 | 0.7187 | 0.7178 | 0.7177 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|