Edit model card

Model description

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9827 0.29 1000 inf 0.2937
1.0203 0.57 2000 inf 0.2711
1.0048 0.86 3000 inf 0.2620
0.9858 1.15 4000 inf 0.2522
0.9709 1.43 5000 inf 0.2365
0.9347 1.72 6000 inf 0.2332
0.9256 2.01 7000 inf 0.2261
0.8936 2.29 8000 inf 0.2203
0.877 2.58 9000 inf 0.2096
0.8393 2.87 10000 inf 0.2017
0.8156 3.15 11000 inf 0.1936
0.8015 3.44 12000 inf 0.1880
0.774 3.73 13000 inf 0.1834

It achieves the best result on the validation set on STEP 13000:

  • Wer: 0.1834

Some problem occurs when calculating the validation loss.

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8 with split test
python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results