Model description
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 4.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9827 | 0.29 | 1000 | inf | 0.2937 |
1.0203 | 0.57 | 2000 | inf | 0.2711 |
1.0048 | 0.86 | 3000 | inf | 0.2620 |
0.9858 | 1.15 | 4000 | inf | 0.2522 |
0.9709 | 1.43 | 5000 | inf | 0.2365 |
0.9347 | 1.72 | 6000 | inf | 0.2332 |
0.9256 | 2.01 | 7000 | inf | 0.2261 |
0.8936 | 2.29 | 8000 | inf | 0.2203 |
0.877 | 2.58 | 9000 | inf | 0.2096 |
0.8393 | 2.87 | 10000 | inf | 0.2017 |
0.8156 | 3.15 | 11000 | inf | 0.1936 |
0.8015 | 3.44 | 12000 | inf | 0.1880 |
0.774 | 3.73 | 13000 | inf | 0.1834 |
It achieves the best result on the validation set on STEP 13000:
- Wer: 0.1834
Some problem occurs when calculating the validation loss.
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8
with splittest
python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- Test WER on Common Voice 8self-reported18.330
- Test CER on Common Voice 8self-reported5.600
- Test WER on Robust Speech Event - Dev Dataself-reported60.250
- Test CER on Robust Speech Event - Dev Dataself-reported15.680