Edit model card

ner_model_ep1

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3469
  • allergy Name F1: 0.7059
  • allergy Name Pres: 0.7326
  • allergy Name Rec: 0.6811
  • cancer F1: 0.6499
  • cancer Pres: 0.6837
  • cancer Rec: 0.6192
  • chronic Disease F1: 0.7431
  • chronic Disease Pres: 0.7462
  • chronic Disease Rec: 0.7400
  • treatment F1: 0.7572
  • treatmen Prest: 0.7680
  • treatment Rec: 0.7468
  • Over All Precision: 0.7475
  • Over All Recall: 0.7237
  • Over All F1: 0.7354
  • Over All Accuracy: 0.8824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss allergy Name F1 allergy Name Pres allergy Name Rec cancer F1 cancer Pres cancer Rec chronic Disease F1 chronic Disease Pres chronic Disease Rec treatment F1 treatmen Prest treatment Rec Over All Precision Over All Recall Over All F1 Over All Accuracy
0.5799 1.0 368 0.4111 0.2933 0.825 0.1784 0.5345 0.5010 0.5728 0.6044 0.6269 0.5834 0.6718 0.6294 0.7204 0.6084 0.6379 0.6228 0.8467
0.3846 2.0 736 0.3624 0.6618 0.6054 0.7297 0.6057 0.6025 0.6088 0.6553 0.6925 0.6219 0.7153 0.7450 0.6879 0.7 0.6537 0.6761 0.8642
0.3069 3.0 1104 0.3516 0.6801 0.7284 0.6378 0.6316 0.6489 0.6152 0.6994 0.7227 0.6775 0.7317 0.7368 0.7267 0.7187 0.6906 0.7044 0.8733
0.2571 4.0 1472 0.3492 0.6807 0.7687 0.6108 0.6472 0.6867 0.612 0.7239 0.7276 0.7201 0.7456 0.7548 0.7366 0.7358 0.7092 0.7222 0.8779
0.2276 5.0 1840 0.3469 0.7059 0.7326 0.6811 0.6499 0.6837 0.6192 0.7431 0.7462 0.7400 0.7572 0.7680 0.7468 0.7475 0.7237 0.7354 0.8824

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Polo123/ner_model_ep1

Finetuned
(6818)
this model