jonathanjordan21's picture
Update README.md
3dc443c
|
raw
history blame
14.6 kB
metadata
license: gpl-3.0
pipeline_tag: graph-ml
tags:
  - code

Initialize Model and Tokenizer

import contextlib
import os
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import requests
from torchvision import datasets, transforms
import psutil
import time
import subprocess
import onnxruntime as ort
import matplotlib.pyplot as plt
import numpy as np
import numexpr as ne
  
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")

model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained") 

Check for the graphics API

def check_graphics_api(target_app_name):
    graphics_api = None

    with contextlib.suppress(subprocess.CalledProcessError):
        output = subprocess.check_output(['tasklist', '/FI', f'imagename eq {target_app_name}', '/M']).decode('utf-8')
        if "opengl32.dll" in output:
            graphics_api = "OpenGL"
        elif "d3d11.dll" in output:
            graphics_api = "DirectX11"
        elif "d3d12.dll" in output:
            graphics_api = "DirectX12"
        elif "vulkan" in output:
            graphics_api = "VULKAN"       
    return graphics_api

Get the target application's process object

def get_target_app_process(target_app_name):
    return next(
        (
            process
            for process in psutil.process_iter(['name'])
            if process.info['name'] == target_app_name
        ),
        None,
    )

Attach the AI to the application's process by PID

def attach_ai_to_app_pid(target_app_process):
    if target_app_process is not None:
        print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
        return True
    else:
        print("Could not find the target application's process to attach the AI.")
        return False

Check if the targeted application is running

def is_target_app_running(target_app_name):
    return any(
        process.info['name'] == target_app_name
        for process in psutil.process_iter(['name'])
    )

Create the directory if it doesn't exist

directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
if not os.path.exists(directory):
    os.makedirs(directory)

Define the neural network model

class NanoCircuit(nn.Module):
    def __init__(self):
        super(NanoCircuit, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)  # Reshape the input from (batch_size, 28, 28) to (batch_size, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

Set the device to GPU if available

device = torch.device("cuda:0" if torch.cuda.is_available() else "CPU")

Load the MNIST dataset

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

Initialize the model and move it to the GPU

model = NanoCircuit().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

Train the model on the GPU with a data cap

def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
    data_processed = 0
    data_cap_bytes = data_cap_gb * (1024 ** 3)
    epoch = 0

    while data_processed < data_cap_bytes:
        running_loss = 0.0
        for i, data in enumerate(data_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # Update the amount of data processed
            data_processed += inputs.nelement() * inputs.element_size()
            if data_processed >= data_cap_bytes:
                break

            optimizer.zero_grad()

            outputs = model(inputs.view(-1, 28 * 28))
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

        epoch += 1
        print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
        print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")

    return model

Save the updated model as a .onnx file

def save_model(model, filepath):
    dummy_input = torch.randn(1, 1, 28, 28).to(device)
    torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)

Train the model with a 1 GB data cap

trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))

target_app_name = "GTA5_TRAINED.exe"
save_interval_seconds = 5 * 60
application_was_running = False
while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=.1)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        print("Target application is not running. Waiting to start training and updating the model...")

    time.sleep(save_interval_seconds)
    
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
    data_processed = 0
    data_cap_bytes = data_cap_gb * (1024 ** 3)
    epoch = 0

    while data_processed < data_cap_bytes:
        running_loss = 0.0
        for i, data in enumerate(data_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # Update the amount of data processed
            data_processed += inputs.nelement() * inputs.element_size()
            if data_processed >= data_cap_bytes:
                break

            optimizer.zero_grad()

            # Compute the outputs and loss using numexpr
            outputs = model(inputs.view(-1, 28 * 28))
            outputs = outputs.cpu().detach().numpy()
            labels = labels.cpu().detach().numpy()
            loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)

            # Backpropagate and update the model parameters
            ne.evaluate("loss", out=loss)
            grad_outputs = np.ones_like(outputs)
            grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
            grad_outputs /= len(labels)
            grad_outputs = ne.evaluate("grad_outputs * loss_grad")
            grad_outputs = torch.from_numpy(grad_outputs).to(device)
            outputs = torch.from_numpy(outputs).to(device)
            loss.backward(grad_outputs)
            optimizer.step()

            running_loss += loss.item()

        epoch += 1
        print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
        print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")

    return model

Train the model with a 10 GB data cap

trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))

target_app_name = "GTA5.exe"
save_interval_seconds = 5 * 60
application_was_running = False
while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        print("Target application is not running. Waiting to start training and updating the model...")

    time.sleep(save_interval_seconds)

def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
    data_processed = 0
    data_cap_bytes = data_cap_gb * (1024 ** 3)
    epoch = 0

    while data_processed < data_cap_bytes:
        running_loss = 0.0
        for i, data in enumerate(data_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # Update the amount of data processed
            data_processed += inputs.nelement() * inputs.element_size()
            if data_processed >= data_cap_bytes:
                break

            optimizer.zero_grad()

            # Compute the outputs and loss using numexpr
            outputs = model(inputs.view(-1, 28 * 28))
            outputs = outputs.cpu().detach().numpy()
            labels = labels.cpu().detach().numpy()
            loss = ne.evaluate("sum(-log(outputs[arange(outputs.shape[0]), labels]))") / len(labels)

            # Backpropagate and update the model parameters
            ne.evaluate("loss", out=loss)
            grad_outputs = np.ones_like(outputs)
            grad_outputs[np.arange(grad_outputs.shape[0]), labels] = -1
            grad_outputs /= len(labels)
            grad_outputs = ne.evaluate("grad_outputs * loss_grad")
            grad_outputs = torch.from_numpy(grad_outputs).to(device)
            outputs = torch.from_numpy(outputs).to(device)
            loss.backward(grad_outputs)
            optimizer.step()

            running_loss += loss.item()

        epoch += 1
        print(f"Epoch {epoch}, Loss: {running_loss / (i + 1)}")
        print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")

    return model

target_app_name = "GTA5.exe"
save_interval_seconds = 1 * 60
application_was_running = False

while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        start_time = time.time()
    print("Target application is not running. Waiting to detect the graphics API...")
    while (time.time() - start_time) < 5:
        if is_target_app_running(target_app_name):
            if graphics_api := check_graphics_api(target_app_name):
                print(f"Detected {graphics_api} in the target application.")
                break
            else:
                print("Could not detect the graphics API used in the target application.")
        time.sleep(1)

    if not is_target_app_running(target_app_name):
        print("Target application not detected in 5 seconds. Shutting down the AI.")
        break
        

while True:
    if is_target_app_running(target_app_name):
        if graphics_api := check_graphics_api(target_app_name):
            print(f"Detected {graphics_api} in the target application.")
        else:
            print("Could not detect the graphics API used in the target application.")
    else:
        start_time = time.time()
        print("Target application is not running. Waiting to start training and updating the model...")
        while (time.time() - start_time) < 5:
            if is_target_app_running(target_app_name):
                print(f"Detected {graphics_api} in the target application.")
                break
            time.sleep(1)

        if not is_target_app_running(target_app_name):
            print("Target application not detected in 5 seconds. Shutting down the AI.")
            break

Generate some random data for the boxplots

np.random.seed(0)
original_data = np.random.normal(0, 1, 100)
trained_data = np.random.normal(0.5, 1, 100)

while True:
    if is_target_app_running(target_app_name):
        print("Target application is running. Training and updating the model...")
        trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=10)
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))

        # Create a box plot of the original and trained data
        plt.figure()
        plt.boxplot([original_data, trained_data], labels=["Original Data", "Trained Data"])
        plt.title("Boxplot of Original and Trained Data")
        plt.ylabel("Values")
        plt.show()

        # Save the box plot as an image
        plt.savefig(r"G:\Epic Games\GTAV\GTA5_AI\Plot Box Comparison\boxplot_comparison.png")

        application_was_running = True
    elif application_was_running:
        print("Target application has exited. Saving the model...")
        save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
        print("Finished training and saved the model.")
        break
    else:
        start_time = time.time()
        print("Target application is not running. Waiting to detect the graphics API...")
        while (time.time() - start_time) < 5:
            if is_target_app_running(target_app_name):
                if graphics_api := check_graphics_api(target_app_name):
                    print(f"Detected {graphics_api} in the target application.")
                    break
                else:
                    print("Could not detect the graphics API used in the target application.")
            time.sleep(1)

        if not is_target_app_running(target_app_name):
            print("Target application not detected in 5 seconds. Shutting down the AI.")
            break